重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要讲解了python实现分组求和与分组累加求和的方法,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。
成都创新互联公司-专业网站定制、快速模板网站建设、高性价比深泽网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式深泽网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖深泽地区。费用合理售后完善,10余年实体公司更值得信赖。我就废话不多说了,大家还是直接看代码吧!
# -*- encoding=utf-8 -*- import pandas as pd data=['abc','abc','abc','asc','ase','ase','ase'] num=[1,2,2,1,2,1,2] df1=pd.DataFrame({'name':data,'num':num}) print(df1) df1['mmm']=df1['num'] df2=df1.groupby(['name', 'num'], as_index=False).count() print(df2) df2.sort_values(['name', 'num'], ascending=[1, 1], inplace=True) print(df2) df2['sum']=df2.groupby(['name'])['mmm'].cumsum() print(df2) kk=df2.groupby(['name'],as_index=False)['num'].sum() print(kk) df3 = pd.merge(df2, kk, on='name', how='left',) print(df3) df3['ratio']=df3['sum']/df3['num_y'] df3.columns = ['name', 'num', 'mmm', 'sum','numsum','ratio'] print(df3) df4=df3.groupby(['mmm'],as_index=False)['ratio'].mean() print(df4)