重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
本文将介绍如何在 web 框架 Flask 中使用可视化工具 pyecharts, 看完本教程你将掌握几种动态展示可视化数据的方法,不会的话你来找我呀...
创新互联主营巩义网站建设的网络公司,主营网站建设方案,app软件开发,巩义h5微信小程序搭建,巩义网站营销推广欢迎巩义等地区企业咨询Flask 模板渲染
1. 新建一个项目 flask-echarts
在编辑器中选择 New Project,然后选择 Flask,创建完之后,Pycharm 会帮我们把启动脚本和模板文件夹都建好
2. 拷贝 pyecharts 模板
将链接中的以下模板 ├── jupyter_lab.html ├── jupyter_notebook.html ├── macro ├── nteract.html ├── simple_chart.html ├── simple_page.html └── table.html 全部拷贝到 tempaltes 文件夹中 github.com/pyecharts/p…
3.渲染图表
主要目标是将 pyecharts 生成的图表数据在视图函数中返回,所以我们直接在 app.py 中修改代码,如下:
from flask import Flask from jinja2 import Markup from pyecharts import options as opts from pyecharts.charts import Bar app = Flask(__name__, static_folder="templates") def bar_base() -> Bar: c = ( Bar() .add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]) .add_yaxis("商家A", [5, 20, 36, 10, 75, 90]) .add_yaxis("商家B", [15, 25, 16, 55, 48, 8]) .set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题")) ) return c @app.route("/") def index(): c = bar_base() return Markup(c.render_embed()) if __name__ == "__main__": app.run()