重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

php数据库平均分配 数据库平均分函数

php的:在指定的时间段内总是去除能够均匀分布在这个时间段内的数据???

可以在查询获取50条后对数据进行处理,那就是用公式如何50条取12条的问题,当然也可用随机,但是随机的分布就不是那么均匀了,另外也可用直接查询的时候用随机或者分段取值

班戈网站建设公司创新互联公司,班戈网站设计制作,有大型网站制作公司丰富经验。已为班戈上千余家提供企业网站建设服务。企业网站搭建\外贸网站建设要多少钱,请找那个售后服务好的班戈做网站的公司定做!

有20个有序数字php怎么平均分配给4用户并写入mysql数据库?

function getDivideNumber($number, $total, $index = 2) {

// 取平均数

$divide_number = floor($number / $total * pow(10, $index)) / pow(10, $index);

$divide_number = number_format($divide_number, $index, '.', '');

// 获取最后一个数字

$last_number = $number - $divide_number * ($total - 1);

$last_number = number_format($last_number, $index, '.', '');

// 拼装平分后的数据返回

$number_str = str_repeat($divide_number . ',', $total - 1) . $last_number;

return explode(',', $number_str);

}

$array = getDivideNumber(120, 3, $index = 0);

得到平均分配的数字数组,用遍历后入库

php的memcached分布式hash算法,如何解决分布不均?crc32这个算法没办法把key值均匀的分布出去

memcached的总结和分布式一致性hash

当前很多大型的web系统为了减轻数据库服务器负载,会采用memchached作为缓存系统以提高响应速度。

目录: ()

memchached简介

hash

取模

一致性hash

虚拟节点

源码解析

参考资料

1. memchached简介

memcached是一个开源的高性能分布式内存对象缓存系统。

其实思想还是比较简单的,实现包括server端(memcached开源项目一般只单指server端)和client端两部分:

server端本质是一个in-memory key-value store,通过在内存中维护一个大的hashmap用来存储小块的任意数据,对外通过统一的简单接口(memcached protocol)来提供操作。

client端是一个library,负责处理memcached protocol的网络通信细节,与memcached server通信,针对各种语言的不同实现分装了易用的API实现了与不同语言平台的集成。

web系统则通过client库来使用memcached进行对象缓存。

2. hash

memcached的分布式主要体现在client端,对于server端,仅仅是部署多个memcached server组成集群,每个server独自维护自己的数据(互相之间没有任何通信),通过daemon监听端口等待client端的请求。

而在client端,通过一致的hash算法,将要存储的数据分布到某个特定的server上进行存储,后续读取查询使用同样的hash算法即可定位。

client端可以采用各种hash算法来定位server:

取模

最简单的hash算法

targetServer = serverList[hash(key) % serverList.size]

直接用key的hash值(计算key的hash值的方法可以自由选择,比如算法CRC32、MD5,甚至本地hash系统,如java的hashcode)模上server总数来定位目标server。这种算法不仅简单,而且具有不错的随机分布特性。

但是问题也很明显,server总数不能轻易变化。因为如果增加/减少memcached server的数量,对原先存储的所有key的后续查询都将定位到别的server上,导致所有的cache都不能被命中而失效。

一致性hash

为了解决这个问题,需要采用一致性hash算法(consistent hash)

相对于取模的算法,一致性hash算法除了计算key的hash值外,还会计算每个server对应的hash值,然后将这些hash值映射到一个有限的值域上(比如0~2^32)。通过寻找hash值大于hash(key)的最小server作为存储该key数据的目标server。如果找不到,则直接把具有最小hash值的server作为目标server。

为了方便理解,可以把这个有限值域理解成一个环,值顺时针递增。

如上图所示,集群中一共有5个memcached server,已通过server的hash值分布到环中。

如果现在有一个写入cache的请求,首先计算x=hash(key),映射到环中,然后从x顺时针查找,把找到的第一个server作为目标server来存储cache,如果超过了2^32仍然找不到,则命中第一个server。比如x的值介于A~B之间,那么命中的server节点应该是B节点

可以看到,通过这种算法,对于同一个key,存储和后续的查询都会定位到同一个memcached server上。

那么它是怎么解决增/删server导致的cache不能命中的问题呢?

假设,现在增加一个server F,如下图

此时,cache不能命中的问题仍然存在,但是只存在于B~F之间的位置(由C变成了F),其他位置(包括F~C)的cache的命中不受影响(删除server的情况类似)。尽管仍然有cache不能命中的存在,但是相对于取模的方式已经大幅减少了不能命中的cache数量。

虚拟节点

但是,这种算法相对于取模方式也有一个缺陷:当server数量很少时,很可能他们在环中的分布不是特别均匀,进而导致cache不能均匀分布到所有的server上。

如图,一共有3台server – 1,2,4。命中4的几率远远高于1和2。

为解决这个问题,需要使用虚拟节点的思想:为每个物理节点(server)在环上分配100~200个点,这样环上的节点较多,就能抑制分布不均匀。

当为cache定位目标server时,如果定位到虚拟节点上,就表示cache真正的存储位置是在该虚拟节点代表的实际物理server上。

另外,如果每个实际server的负载能力不同,可以赋予不同的权重,根据权重分配不同数量的虚拟节点。

// 采用有序map来模拟环

this.consistentBuckets = new TreeMap();

MessageDigest md5 = MD5.get();//用MD5来计算key和server的hash值

// 计算总权重

if ( this.totalWeight for ( int i = 0; i this.weights.length; i++ )

this.totalWeight += ( this.weights[i] == null ) ? 1 : this.weights[i];

} else if ( this.weights == null ) {

this.totalWeight = this.servers.length;

}

// 为每个server分配虚拟节点

for ( int i = 0; i servers.length; i++ ) {

// 计算当前server的权重

int thisWeight = 1;

if ( this.weights != null this.weights[i] != null )

thisWeight = this.weights[i];

// factor用来控制每个server分配的虚拟节点数量

// 权重都相同时,factor=40

// 权重不同时,factor=40*server总数*该server权重所占的百分比

// 总的来说,权重越大,factor越大,可以分配越多的虚拟节点

double factor = Math.floor( ((double)(40 * this.servers.length * thisWeight)) / (double)this.totalWeight );

for ( long j = 0; j factor; j++ ) {

// 每个server有factor个hash值

// 使用server的域名或IP加上编号来计算hash值

// 比如server - "172.45.155.25:11111"就有factor个数据用来生成hash值:

// 172.45.155.25:11111-1, 172.45.155.25:11111-2, ..., 172.45.155.25:11111-factor

byte[] d = md5.digest( ( servers[i] + "-" + j ).getBytes() );

// 每个hash值生成4个虚拟节点

for ( int h = 0 ; h 4; h++ ) {

Long k =

((long)(d[3+h*4]0xFF) 24)

| ((long)(d[2+h*4]0xFF) 16)

| ((long)(d[1+h*4]0xFF) 8 )

| ((long)(d[0+h*4]0xFF));

// 在环上保存节点

consistentBuckets.put( k, servers[i] );

}

}

// 每个server一共分配4*factor个虚拟节点

}

// 采用有序map来模拟环

this.consistentBuckets = new TreeMap();

MessageDigest md5 = MD5.get();//用MD5来计算key和server的hash值

// 计算总权重

if ( this.totalWeight for ( int i = 0; i this.weights.length; i++ )

this.totalWeight += ( this.weights[i] == null ) ? 1 : this.weights[i];

} else if ( this.weights == null ) {

this.totalWeight = this.servers.length;

}

// 为每个server分配虚拟节点

for ( int i = 0; i servers.length; i++ ) {

// 计算当前server的权重

int thisWeight = 1;

if ( this.weights != null this.weights[i] != null )

thisWeight = this.weights[i];

// factor用来控制每个server分配的虚拟节点数量

// 权重都相同时,factor=40

// 权重不同时,factor=40*server总数*该server权重所占的百分比

// 总的来说,权重越大,factor越大,可以分配越多的虚拟节点

double factor = Math.floor( ((double)(40 * this.servers.length * thisWeight)) / (double)this.totalWeight );

for ( long j = 0; j factor; j++ ) {

// 每个server有factor个hash值

// 使用server的域名或IP加上编号来计算hash值

// 比如server - "172.45.155.25:11111"就有factor个数据用来生成hash值:

// 172.45.155.25:11111-1, 172.45.155.25:11111-2, ..., 172.45.155.25:11111-factor

byte[] d = md5.digest( ( servers[i] + "-" + j ).getBytes() );

// 每个hash值生成4个虚拟节点

for ( int h = 0 ; h 4; h++ ) {

Long k =

((long)(d[3+h*4]0xFF) 24)

| ((long)(d[2+h*4]0xFF) 16)

| ((long)(d[1+h*4]0xFF) 8 )

| ((long)(d[0+h*4]0xFF));

// 在环上保存节点

consistentBuckets.put( k, servers[i] );

}

}

// 每个server一共分配4*factor个虚拟节点

}

// 用MD5来计算key的hash值

MessageDigest md5 = MD5.get();

md5.reset();

md5.update( key.getBytes() );

byte[] bKey = md5.digest();

// 取MD5值的低32位作为key的hash值

long hv = ((long)(bKey[3]0xFF) 24) | ((long)(bKey[2]0xFF) 16) | ((long)(bKey[1]0xFF) 8 ) | (long)(bKey[0]0xFF);

// hv的tailMap的第一个虚拟节点对应的即是目标server

SortedMap tmap = this.consistentBuckets.tailMap( hv );

return ( tmap.isEmpty() ) ? this.consistentBuckets.firstKey() : tmap.firstKey();

更多问题到问题求助专区()

php 23条订单平均分配给3给人

鉴于你提的问题,我拆分成为了两部分,假设23和3都是变量,要完成这个事情,首先要知道给每个人应该分配多少任务,然后就是分配任务的事情了

# 任务数

$m = 23;

# 模拟任务id

$order = range(1,$m);

# 用户

$user = ['小红', '小明', '小花'];

$n = count($user);

# 单人最少任务数

$min = floor($m / $n);

# 单人最多任务数

$max = $min + 1;

# 最多任务数的人数

$maxNum = $m - $min * $n;

# 每人多少个任务

$userNum = array_merge( array_fill(0, $maxNum, $max), array_fill(0, $n - $maxNum, $min) );

# 打乱

shuffle($userNum);

# 每个用户多少任务

$user = array_combine($user, $userNum);

# 分配任务

$ret = [];

foreach( $user as $_user = $_count){

# 随机分配

$ret[$_user][] = array_rand($order, $_count);

}

代码写的比较简单,而且很明显任务数太大会有问题。

如果是比较大的任务分配系统,建议采用队列,按照楼上的说轮流或随机或按权重进行分配

有什么问题的话可以互相交流,还望采纳


本文名称:php数据库平均分配 数据库平均分函数
文章出自:http://cqcxhl.com/article/ddiesej.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP