重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

python对比图像区别的方法-创新互联

小编给大家分享一下python对比图像区别的方法,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

成都创新互联专注于网站建设,为客户提供网站设计制作、成都网站建设、网页设计开发服务,多年建网站服务经验,各类网站都可以开发,品牌网站建设,公司官网,公司展示网站,网站设计,建网站费用,建网站多少钱,价格优惠,收费合理。

python对比图像的区别方法:首先使用【pylab.imread】读取图片;然后使用【matplotlib.pylab - plt.imshow】显示图片;接着灰度图与RGB图相互转换;最后保存图片即可。

python对比图像区别的方法

python对比图像的区别方法:

一、读取图片

pylab.imread和PIL.Image.open读入的都是RBG顺序,

而cv2.imread读入的是BGR顺序,混合使用的时候要特备注意

1 matplotlib.pylab

import pylab as plt
import numpy as np
img = plt.imread('examples.png')
print(type(img), img.dtype, np.min(img), np.max(img))
[out]
(, dtype('float32'), 0.0, 1.0)    # matplotlib读取进来的图片是float,0-1

2 PIL.image.open

from PIL import Image
import numpy as np
img = Image.open('examples.png')
print(type(img), np.min(img), np.max(img))
img = np.array(img)     # 将PIL格式图片转为numpy格式
print(type(img), img.dtype, np.min(img), np.max(img))
[out]
(, 0, 255)    # 注意,PIL是有自己的数据结构的,但是可以转换成numpy数组
(, dtype('uint8'), 0, 255)    # 和用matplotlib读取不同,PIL和matlab相同,读进来图片和其存储在硬盘的样子是一样的,uint8,0-255

3 cv2.imread

import cv2
import numpy as np
img = cv2.imread('examples.png')    # 默认是读入为彩色图,即使原图是灰度图也会复制成三个相同的通道变成彩色图
img_gray = cv2.imread('examples.png', 0)    # 第二个参数为0的时候读入为灰度图,即使原图是彩色图也会转成灰度图
print(type(img), img.dtype, np.min(img), np.max(img))
print(img.shape)
print(img_gray.shape)
[out]
(, dtype('uint8'), 0, 255)    # opencv读进来的是numpy数组,类型是uint8,0-255
(824, 987, 3)    # 彩色图3通道
(824, 987)    # 灰度图单通道
import cv2
import pylab as plt
from PIL import Image
import numpy as np
img_plt = plt.imread('examples.png')
img_pil = Image.open('examples.png')
img_cv = cv2.imread('examples.png')
print(img_plt[125, 555, :])
print(np.array(img_pil)[125, 555, :] / 255.0)
print(img_cv[125, 555, :] / 255.0)
[out]
[ 0.61176473  0.3764706   0.29019609]
[ 0.61176471  0.37647059  0.29019608]
[ 0.29019608  0.37647059  0.61176471]    # opencv的是BGR顺序

二、显示图片

1、matplotlib.pylab - plt.imshow,这个函数的实际上就是将一个numpy数组格式的RGB图像显示出来

import pylab as plt
import numpy as np
img = plt.imread('examples.png')
plt.imshow(img) 
plt.show()
import pylab as plt
from PIL import Image
import numpy as np
img = Image.open('examples.png')
img_gray = img.convert('L')    #转换成灰度图像
img = np.array(img)
img_gray = np.array(img_gray)
plt.imshow(img)    # or plt.imshow(img / 255.0),matplotlib和matlab一样,如果是float类型的图像,范围是0-1才能正常imshow,如果是uint8图像,范围则需要是0-255
plt.show()
plt.imshow(img_gray, cmap=plt.gray())    # 显示灰度图要设置cmap参数
plt.show()
plt.imshow(Image.open('examples.png'))    # 实际上plt.imshow可以直接显示PIL格式图像
plt.show()
import pylab as plt
import cv2
import numpy as np
img = cv2.imread('examples.png')
plt.imshow(img[..., -1::-1])    # 因为opencv读取进来的是bgr顺序呢的,而imshow需要的是rgb顺序,因此需要先反过来
plt.show()

2 cv2显示图片

import cv2
image2=cv2.imread(r"test/aaa/0002/0002_0_1.jpg")
cv2.imshow("1",image2)
cv2.waitKey(0)

三、灰度图-RGB图相互转换

1 PIL.Image

from PIL import Image
img = Image.open('examples.png')
img_gray = img.convert('L')    # RGB转换成灰度图像
img_rgb = img_gray.convert('RGB') # 灰度转RGB
print(img)
print(img_gray)
print(img_rgb)
[out]


2 cv2(注意,opencv在读入图片的时候就可以通过参数实现颜色通道的转换,下面是用别的方式实现)

import cv2
import pylab as plt
img = cv2.imread('examples.png')
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)    # BGR转灰度
img_bgr = cv2.cvtColor(img_gray, cv2.COLOR_GRAY2BGR)    # 灰度转BRG
img_rgb = cv2.cvtColor(img_gray, cv2.COLOR_GRAY2RGB)    # 也可以灰度转RGB

四、保存图片

1 PIL.image - 保存PIL格式的图片

from PIL import Image
img = Image.open('examples.png')
img.save('examples2.png')
img_gray = img.convert('L')
img_gray.save('examples_gray.png')    # 不管是灰度还是彩色,直接用save函数保存就可以,但注意,只有PIL格式的图片能够用save函数

2 cv2.imwrite - 保存numpy格式的图片

import cv2
img = cv2.imread('examples.png')    # 这是BGR图片
cv2.imwrite('examples2.png', img)    # 这里也应该用BGR图片保存,这里要非常注意,因为用pylab或PIL读入的图片都是RGB的,如果要用opencv存图片就必须做一个转换
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.imwrite('examples_gray.png', img_gray)

以上是python对比图像区别的方法的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联-成都网站建设公司行业资讯频道!


分享名称:python对比图像区别的方法-创新互联
分享URL:http://cqcxhl.com/article/djojcs.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP