重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
python判断3与3.0相等可以用id函数。根据查询相关公开信息显示,python中对象包含三个基本要素,如下:id(身份标识)可以理解为c里面的指针或内存地址type(数据类型)value(值)。
成都创新互联专注于企业营销型网站建设、网站重做改版、定南网站定制设计、自适应品牌网站建设、H5开发、商城系统网站开发、集团公司官网建设、成都外贸网站建设公司、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为定南等各大城市提供网站开发制作服务。
可以直接使用python的内建函数cmp():
s1='hello'
s2='hell'
s3='hello world'
s4='hello'
cmp(s1,s2)
#输出结果为1
cmp(s1,s3)
#输出结果为-1
cmp(s1,s4)
#输出结果为0
1、 定义一个特殊的 __slots__ 变量,来限制该class实例能添加的属性
2、 内置的 @property(关键字) 装饰器就是负责把一个方法变成属性调用的。@property.setter(这里的property是类里面的属性名)负责把一个setter方法变成属性赋值。
3、 __str__(),__repr__(),__iter__(),__next__(),__getitem__(),__setitem__(),__delitem__(),__getattr__(),__call__()
import numpy as np
a = np.array([1,2,3])
b = np.array([1,2,3])
print((a==b).all())
a = np.array([3,2,1])
b = np.array([1,2,3])
print((a==b).all())
可以用第三方库吧? 抄的。再加上计数,随机数列表就行了。$ pythonpython 2.7.3 (default, mar 14 2014, 11:57:14) [gcc 4.7.2] on linux2type "help", "copyright", "credits" or "license" for more information. a = 1 b = 2 c = 2 d = 4 if a b == c d:... print "ok"... ok
linux环境下,没有首先安装python_Levenshtein,用法如下:
重点介绍几个该包中的几个计算字串相似度的几个函数实现。
1. Levenshtein.hamming(str1, str2)
计算汉明距离。要求str1和str2必须长度一致。是描述两个等长字串之间对应位置上不同字符的个数。如
2. Levenshtein.distance(str1, str2)
计算编辑距离(也成Levenshtein距离)。是描述由一个字串转化成另一个字串最少的操作次数,在其中的操作包括插入、删除、替换。如
算法实现 参考动态规划整理:。
3. Levenshtein.ratio(str1, str2)
计算莱文斯坦比。计算公式 r = (sum - ldist) / sum, 其中sum是指str1 和 str2 字串的长度总和,ldist是类编辑距离
注意:这里的类编辑距离不是2中所说的编辑距离,2中三种操作中每个操作+1,而在此处,删除、插入依然+1,但是替换+2
这样设计的目的:ratio('a', 'c'),sum=2,按2中计算为(2-1)/2 = 0.5,’a','c'没有重合,显然不合算,但是替换操作+2,就可以解决这个问题。
4. Levenshtein.jaro(s1, s2)
计算jaro距离,
其中的m为s1, s2的匹配长度,当某位置的认为匹配 当该位置字符相同,或者在不超过
t是调换次数的一半
5. Levenshtein.jaro_winkler(s1, s2)
计算Jaro–Winkler距离