重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

python3.7函数 python377怎么用

python3.7入门eval函数里输入问题

我刚刚说错了。它的大概意思是你写了一个循环程序。看来你写的读字母的那个部分有点不太对,换一个读句尾字母的办法吧。

成都创新互联公司坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都网站设计、做网站、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的辛集网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

python字典操作函数

字典是一种通过名字或者关键字引用的得数据结构,其键可以是数字、字符串、元组,这种结构类型也称之为映射。字典类型是Python中唯一内建的映射类型,基本的操作包括如下:

(1)len():返回字典中键—值对的数量;

(2)d[k]:返回关键字对于的值;

(3)d[k]=v:将值关联到键值k上;

(4)del d[k]:删除键值为k的项;

(5)key in d:键值key是否在d中,是返回True,否则返回False。

(6)clear函数:清除字典中的所有项

(7)copy函数:返回一个具有相同键值的新字典;deepcopy()函数使用深复制,复制其包含所有的值,这个方法可以解决由于副本修改而使原始字典也变化的问题

(8)fromkeys函数:使用给定的键建立新的字典,键默认对应的值为None

(9)get函数:访问字典成员

(10)has_key函数:检查字典中是否含有给出的键

(11)items和iteritems函数:items将所有的字典项以列表方式返回,列表中项来自(键,值),iteritems与items作用相似,但是返回的是一个迭代器对象而不是列表

(12)keys和iterkeys:keys将字典中的键以列表形式返回,iterkeys返回键的迭代器

(13)pop函数:删除字典中对应的键

(14)popitem函数:移出字典中的项

(15)setdefault函数:类似于get方法,获取与给定键相关联的值,也可以在字典中不包含给定键的情况下设定相应的键值

(16)update函数:用一个字典更新另外一个字典

(17) values和itervalues函数:values以列表的形式返回字典中的值,itervalues返回值得迭代器,由于在字典中值不是唯一的,所以列表中可以包含重复的元素

一、字典的创建

1.1 直接创建字典

d={'one':1,'two':2,'three':3}

printd

printd['two']

printd['three']

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':3,'two':2,'one':1}

1.2 通过dict创建字典

# _*_ coding:utf-8 _*_

items=[('one',1),('two',2),('three',3),('four',4)]

printu'items中的内容:'

printitems

printu'利用dict创建字典,输出字典内容:'

d=dict(items)

printd

printu'查询字典中的内容:'

printd['one']

printd['three']

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

items中的内容:

[('one',1), ('two',2), ('three',3), ('four',4)]

利用dict创建字典,输出字典内容:

{'four':4,'three':3,'two':2,'one':1}

查询字典中的内容:

或者通过关键字创建字典

# _*_ coding:utf-8 _*_

d=dict(one=1,two=2,three=3)

printu'输出字典内容:'

printd

printu'查询字典中的内容:'

printd['one']

printd['three']

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

输出字典内容:

{'three':3,'two':2,'one':1}

查询字典中的内容:

二、字典的格式化字符串

# _*_ coding:utf-8 _*_

d={'one':1,'two':2,'three':3,'four':4}

printd

print"three is %(three)s."%d

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'four':4,'three':3,'two':2,'one':1}

threeis3.

三、字典方法

3.1 clear函数:清除字典中的所有项

# _*_ coding:utf-8 _*_

d={'one':1,'two':2,'three':3,'four':4}

printd

d.clear()

printd

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'four':4,'three':3,'two':2,'one':1}

{}

请看下面两个例子

3.1.1

# _*_ coding:utf-8 _*_

d={}

dd=d

d['one']=1

d['two']=2

printdd

d={}

printd

printdd

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'two':2,'one':1}

{}

{'two':2,'one':1}

3.1.2

# _*_ coding:utf-8 _*_

d={}

dd=d

d['one']=1

d['two']=2

printdd

d.clear()

printd

printdd

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'two':2,'one':1}

{}

{}

3.1.2与3.1.1唯一不同的是在对字典d的清空处理上,3.1.1将d关联到一个新的空字典上,这种方式对字典dd是没有影响的,所以在字典d被置空后,字典dd里面的值仍旧没有变化。但是在3.1.2中clear方法清空字典d中的内容,clear是一个原地操作的方法,使得d中的内容全部被置空,这样dd所指向的空间也被置空。

3.2 copy函数:返回一个具有相同键值的新字典

# _*_ coding:utf-8 _*_

x={'one':1,'two':2,'three':3,'test':['a','b','c']}

printu'初始X字典:'

printx

printu'X复制到Y:'

y=x.copy()

printu'Y字典:'

printy

y['three']=33

printu'修改Y中的值,观察输出:'

printy

printx

printu'删除Y中的值,观察输出'

y['test'].remove('c')

printy

printx

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

初始X字典:

{'test': ['a','b','c'],'three':3,'two':2,'one':1}

X复制到Y:

Y字典:

{'test': ['a','b','c'],'one':1,'three':3,'two':2}

修改Y中的值,观察输出:

{'test': ['a','b','c'],'one':1,'three':33,'two':2}

{'test': ['a','b','c'],'three':3,'two':2,'one':1}

删除Y中的值,观察输出

{'test': ['a','b'],'one':1,'three':33,'two':2}

{'test': ['a','b'],'three':3,'two':2,'one':1}

注:在复制的副本中对值进行替换后,对原来的字典不产生影响,但是如果修改了副本,原始的字典也会被修改。deepcopy函数使用深复制,复制其包含所有的值,这个方法可以解决由于副本修改而使原始字典也变化的问题。

# _*_ coding:utf-8 _*_

fromcopyimportdeepcopy

x={}

x['test']=['a','b','c','d']

y=x.copy()

z=deepcopy(x)

printu'输出:'

printy

printz

printu'修改后输出:'

x['test'].append('e')

printy

printz

运算输出:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

输出:

{'test': ['a','b','c','d']}

{'test': ['a','b','c','d']}

修改后输出:

{'test': ['a','b','c','d','e']}

{'test': ['a','b','c','d']}

3.3 fromkeys函数:使用给定的键建立新的字典,键默认对应的值为None

# _*_ coding:utf-8 _*_

d=dict.fromkeys(['one','two','three'])

printd

运算输出:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':None,'two':None,'one':None}

或者指定默认的对应值

# _*_ coding:utf-8 _*_

d=dict.fromkeys(['one','two','three'],'unknow')

printd

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':'unknow','two':'unknow','one':'unknow'}

3.4 get函数:访问字典成员

# _*_ coding:utf-8 _*_

d={'one':1,'two':2,'three':3}

printd

printd.get('one')

printd.get('four')

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':3,'two':2,'one':1}

1

None

注:get函数可以访问字典中不存在的键,当该键不存在是返回None

3.5 has_key函数:检查字典中是否含有给出的键

# _*_ coding:utf-8 _*_

d={'one':1,'two':2,'three':3}

printd

printd.has_key('one')

printd.has_key('four')

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':3,'two':2,'one':1}

True

False

3.6 items和iteritems函数:items将所有的字典项以列表方式返回,列表中项来自(键,值),iteritems与items作用相似,但是返回的是一个迭代器对象而不是列表

# _*_ coding:utf-8 _*_

d={'one':1,'two':2,'three':3}

printd

list=d.items()

forkey,valueinlist:

printkey,':',value

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':3,'two':2,'one':1}

three :3

two :2

one :1

# _*_ coding:utf-8 _*_

d={'one':1,'two':2,'three':3}

printd

it=d.iteritems()

fork,vinit:

print"d[%s]="%k,v

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':3,'two':2,'one':1}

d[three]=3

d[two]=2

d[one]=1

3.7 keys和iterkeys:keys将字典中的键以列表形式返回,iterkeys返回键的迭代器

# _*_ coding:utf-8 _*_

d={'one':1,'two':2,'three':3}

printd

printu'keys方法:'

list=d.keys()

printlist

printu'\niterkeys方法:'

it=d.iterkeys()

forxinit:

printx

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':3,'two':2,'one':1}

keys方法:

['three','two','one']

iterkeys方法:

three

two

one

3.8 pop函数:删除字典中对应的键

# _*_ coding:utf-8 _*_

d={'one':1,'two':2,'three':3}

printd

d.pop('one')

printd

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':3,'two':2,'one':1}

{'three':3,'two':2}

3.9 popitem函数:移出字典中的项

# _*_ coding:utf-8 _*_

d={'one':1,'two':2,'three':3}

printd

d.popitem()

printd

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':3,'two':2,'one':1}

{'two':2,'one':1}

3.10 setdefault函数:类似于get方法,获取与给定键相关联的值,也可以在字典中不包含给定键的情况下设定相应的键值

# _*_ coding:utf-8 _*_

d={'one':1,'two':2,'three':3}

printd

printd.setdefault('one',1)

printd.setdefault('four',4)

printd

运算结果:

{'three':3,'two':2,'one':1}

{'four':4,'three':3,'two':2,'one':1}

3.11 update函数:用一个字典更新另外一个字典

# _*_ coding:utf-8 _*_

d={

'one':123,

'two':2,

'three':3

}

printd

x={'one':1}

d.update(x)

printd

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

{'three':3,'two':2,'one':123}

{'three':3,'two':2,'one':1}

3.12 values和itervalues函数:values以列表的形式返回字典中的值,itervalues返回值得迭代器,由于在字典中值不是唯一的,所以列表中可以包含重复的元素

# _*_ coding:utf-8 _*_

d={

'one':123,

'two':2,

'three':3,

'test':2

}

printd.values()

运算结果:

=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======

[2,3,2,123]

”错误提示,请教“大家”'>Python3.7中reversed()函数出现“list_reverseiterator object at 0x02F0AC10>”错误提示,请教“大家”

函数reversed不返回列表,而是返回一个迭代器。

可使用list将返回的对象转换为列表。

x = [1,2,3]

number = reversed(x)# error list_reverseiterator object at 0x03BE7A10

number = list(reversed(x)) [3,2,1]

「干货」让Python性能起飞的15个技巧,你知道几个呢?

前言

Python 一直以来被大家所诟病的一点就是执行速度慢,但不可否认的是 Python 依然是我们学习和工作中的一大利器。本文总结了15个tips有助于提升 Python 执行速度、优化性能。

关于 Python 如何精确地测量程序的执行时间,这个问题看起来简单其实很复杂,因为程序的执行时间受到很多因素的影响,例如操作系统、Python 版本以及相关硬件(CPU 性能、内存读写速度)等。在同一台电脑上运行相同版本的语言时,上述因素就是确定的了,但是程序的睡眠时间依然是变化的,且电脑上正在运行的其他程序也会对实验有干扰,因此严格来说这就是实验不可重复。

我了解到的关于计时比较有代表性的两个库就是 time 和 timeit 。

其中, time 库中有 time() 、 perf_counter() 以及 process_time() 三个函数可用来计时(以秒为单位),加后缀 _ns 表示以纳秒计时(自 Python3.7 始)。在此之前还有 clock() 函数,但是在 Python3.3 之后被移除了。上述三者的区别如下:

与 time 库相比, timeit 有两个优点:

timeit.timeit(stmt='pass', setup='pass', timer= , number=1000000, globals=None) 参数说明:

本文所有的计时均采用 timeit 方法,且采用默认的执行次数一百万次。

为什么要执行一百万次呢?因为我们的测试程序很短,如果不执行这么多次的话,根本看不出差距。

Exp1:将字符串数组中的小写字母转为大写字母。

测试数组为 oldlist = ['life', 'is', 'short', 'i', 'choose', 'python']。

方法一

方法二

方法一耗时 0.5267724000000005s ,方法二耗时 0.41462569999999843s ,性能提升 21.29%

Exp2:求两个 list 的交集。

测试数组:a = [1,2,3,4,5],b = [2,4,6,8,10]。

方法一

方法二

方法一耗时 0.9507264000000006s ,方法二耗时 0.6148200999999993s ,性能提升 35.33%

关于 set() 的语法: | 、 、 - 分别表示求并集、交集、差集。

我们可以通过多种方式对序列进行排序,但其实自己编写排序算法的方法有些得不偿失。因为内置的 sort() 或 sorted() 方法已经足够优秀了,且利用参数 key 可以实现不同的功能,非常灵活。二者的区别是 sort() 方法仅被定义在 list 中,而 sorted() 是全局方法对所有的可迭代序列都有效。

Exp3:分别使用快排和 sort() 方法对同一列表排序。

测试数组:lists = [2,1,4,3,0]。

方法一

方法二

方法一耗时 2.4796975000000003s ,方法二耗时 0.05551999999999424s ,性能提升 97.76%

顺带一提, sorted() 方法耗时 0.1339823999987857s 。

可以看出, sort() 作为 list 专属的排序方法还是很强的, sorted() 虽然比前者慢一点,但是胜在它“不挑食”,它对所有的可迭代序列都有效。

扩展 :如何定义 sort() 或 sorted() 方法的 key

1.通过 lambda 定义

2.通过 operator 定义

operator 的 itemgetter() 适用于普通数组排序, attrgetter() 适用于对象数组排序

3.通过 cmp_to_key() 定义,最为灵活

Exp4:统计字符串中每个字符出现的次数。

测试数组:sentence='life is short, i choose python'。

方法一

方法二

方法一耗时 2.8105250000000055s ,方法二耗时 1.6317423000000062s ,性能提升 41.94%

列表推导(list comprehension)短小精悍。在小代码片段中,可能没有太大的区别。但是在大型开发中,它可以节省一些时间。

Exp5:对列表中的奇数求平方,偶数不变。

测试数组:oldlist = range(10)。

方法一

方法二

方法一耗时 1.5342976000000021s ,方法二耗时 1.4181957999999923s ,性能提升 7.57%

大多数人都习惯使用 + 来连接字符串。但其实,这种方法非常低效。因为, + 操作在每一步中都会创建一个新字符串并复制旧字符串。更好的方法是用 join() 来连接字符串。关于字符串的其他操作,也尽量使用内置函数,如 isalpha() 、 isdigit() 、 startswith() 、 endswith() 等。

Exp6:将字符串列表中的元素连接起来。

测试数组:oldlist = ['life', 'is', 'short', 'i', 'choose', 'python']。

方法一

方法二

方法一耗时 0.27489080000000854s ,方法二耗时 0.08166570000000206s ,性能提升 70.29%

join 还有一个非常舒服的点,就是它可以指定连接的分隔符,举个例子

life//is//short//i//choose//python

Exp6:交换x,y的值。

测试数据:x, y = 100, 200。

方法一

方法二

方法一耗时 0.027853900000010867s ,方法二耗时 0.02398730000000171s ,性能提升 13.88%

在不知道确切的循环次数时,常规方法是使用 while True 进行无限循环,在代码块中判断是否满足循环终止条件。虽然这样做没有任何问题,但 while 1 的执行速度比 while True 更快。因为它是一种数值转换,可以更快地生成输出。

Exp8:分别用 while 1 和 while True 循环 100 次。

方法一

方法二

方法一耗时 3.679268300000004s ,方法二耗时 3.607847499999991s ,性能提升 1.94%

将文件存储在高速缓存中有助于快速恢复功能。Python 支持装饰器缓存,该缓存在内存中维护特定类型的缓存,以实现最佳软件驱动速度。我们使用 lru_cache 装饰器来为斐波那契函数提供缓存功能,在使用 fibonacci 递归函数时,存在大量的重复计算,例如 fibonacci(1) 、 fibonacci(2) 就运行了很多次。而在使用了 lru_cache 后,所有的重复计算只会执行一次,从而大大提高程序的执行效率。

Exp9:求斐波那契数列。

测试数据:fibonacci(7)。

方法一

方法二

方法一耗时 3.955014900000009s ,方法二耗时 0.05077979999998661s ,性能提升 98.72%

注意事项:

我被执行了(执行了两次 demo(1, 2) ,却只输出一次)

functools.lru_cache(maxsize=128, typed=False) 的两个可选参数:

点运算符( . )用来访问对象的属性或方法,这会引起程序使用 __getattribute__() 和 __getattr__() 进行字典查找,从而带来不必要的开销。尤其注意,在循环当中,更要减少点运算符的使用,应该将它移到循环外处理。

这启发我们应该尽量使用 from ... import ... 这种方式来导包,而不是在需要使用某方法时通过点运算符来获取。其实不光是点运算符,其他很多不必要的运算我们都尽量移到循环外处理。

Exp10:将字符串数组中的小写字母转为大写字母。

测试数组为 oldlist = ['life', 'is', 'short', 'i', 'choose', 'python']。

方法一

方法二

方法一耗时 0.7235491999999795s ,方法二耗时 0.5475435999999831s ,性能提升 24.33%

当我们知道具体要循环多少次时,使用 for 循环比使用 while 循环更好。

Exp12:使用 for 和 while 分别循环 100 次。

方法一

方法二

方法一耗时 3.894683299999997s ,方法二耗时 1.0198077999999953s ,性能提升 73.82%

Numba 可以将 Python 函数编译码为机器码执行,大大提高代码执行速度,甚至可以接近 C 或 FORTRAN 的速度。它能和 Numpy 配合使用,在 for 循环中或存在大量计算时能显著地提高执行效率。

Exp12:求从 1 加到 100 的和。

方法一

方法二

方法一耗时 3.7199997000000167s ,方法二耗时 0.23769430000001535s ,性能提升 93.61%

矢量化是 NumPy 中的一种强大功能,可以将操作表达为在整个数组上而不是在各个元素上发生。这种用数组表达式替换显式循环的做法通常称为矢量化。

在 Python 中循环数组或任何数据结构时,会涉及很多开销。NumPy 中的向量化操作将内部循环委托给高度优化的 C 和 Fortran 函数,从而使 Python 代码更加快速。

Exp13:两个长度相同的序列逐元素相乘。

测试数组:a = [1,2,3,4,5], b = [2,4,6,8,10]

方法一

方法二

方法一耗时 0.6706845000000214s ,方法二耗时 0.3070132000000001s ,性能提升 54.22%

若要检查列表中是否包含某成员,通常使用 in 关键字更快。

Exp14:检查列表中是否包含某成员。

测试数组:lists = ['life', 'is', 'short', 'i', 'choose', 'python']

方法一

方法二

方法一耗时 0.16038449999999216s ,方法二耗时 0.04139250000000061s ,性能提升 74.19%

itertools 是用来操作迭代器的一个模块,其函数主要可以分为三类:无限迭代器、有限迭代器、组合迭代器。

Exp15:返回列表的全排列。

测试数组:["Alice", "Bob", "Carol"]

方法一

方法二

方法一耗时 3.867292899999484s ,方法二耗时 0.3875405000007959s ,性能提升 89.98%

根据上面的测试数据,我绘制了下面这张实验结果图,可以更加直观的看出不同方法带来的性能差异。

从图中可以看出,大部分的技巧所带来的性能增幅还是比较可观的,但也有少部分技巧的增幅较小(例如编号5、7、8,其中,第 8 条的两种方法几乎没有差异)。

总结下来,我觉得其实就是下面这两条原则:

内置库函数由专业的开发人员编写并经过了多次测试,很多库函数的底层是用 C 语言开发的。因此,这些函数总体来说是非常高效的(比如 sort() 、 join() 等),自己编写的方法很难超越它们,还不如省省功夫,不要重复造轮子了,何况你造的轮子可能更差。所以,如果函数库中已经存在该函数,就直接拿来用。

有很多优秀的第三方库,它们的底层可能是用 C 和 Fortran 来实现的,像这样的库用起来绝对不会吃亏,比如前文提到的 Numpy 和 Numba,它们带来的提升都是非常惊人的。类似这样的库还有很多,比如Cython、PyPy等,这里我只是抛砖引玉。

原文链接:

python如何获取函数的参数名

我这里用的是IDLE(我自己也觉得有点低端),Python3(2应该也可以)

help()

Welcome to Python 3.7's help utility!

If this is your first time using Python, you should definitely check out

the tutorial on the Internet at .

Enter the name of any module, keyword, or topic to get help on writing

Python programs and using Python modules. To quit this help utility and

return to the interpreter, just type "quit".

To get a list of available modules, keywords, symbols, or topics, type

"modules", "keywords", "symbols", or "topics". Each module also comes

with a one-line summary of what it does; to list the modules whose name

or summary contain a given string such as "spam", type "modules spam".

help sum

Help on built-in function sum in module builtins:

sum(iterable, start=0, /)

Return the sum of a 'start' value (default: 0) plus an iterable of numbers

When the iterable is empty, return the start value.

This function is intended specifically for use with numeric values and may

reject non-numeric types.

解释一下:先在Shell输入help(),它就会问你你要哪个函数的说明。然后你输入对应函数(比如sum),就可以看到这一行:sum(iterable, start=0, /),也就是说你要先输入iterable参数,start可以选择输入(有默认值)。

或者还有一种方法:用的时候直接输入函数加上左括号 比如sum( 然后你就可以看到下面有一个框,然后按照说明写就好了。如果不小心不见了,就可以把左括号去掉再重新输入,就可以再看到这个框啦!

Python函数的参数类型

Python函数的参数类型主要包括必选参数、可选参数、可变参数、位置参数和关键字参数,本文介绍一下他们的定义以及可变数据类型参数传递需要注意的地方。

必选参数(Required arguments)是必须输入的参数,比如下面的代码,必须输入2个参数,否则就会报错:

其实上面例子中的参数 num1和num2也属于关键字参数,比如可以通过如下方式调用:

执行结果:

可选参数(Optional arguments)可以不用传入函数,有一个默认值,如果没有传入会使用默认值,不会报错。

位置参数(positional arguments)根据其在函数定义中的位置调用,下面是pow()函数的帮助信息:

x,y,z三个参数的的顺序是固定的,并且不能使用关键字:

输出:

在上面的pow()函数帮助信息中可以看到位置参数后面加了一个反斜杠 / ,这是python内置函数的语法定义,Python开发人员不能在python3.8版本之前的代码中使用此语法。但python3.0到3.7版本可以使用如下方式定义位置参数:

星号前面的参数为位置参数或者关键字参数,星号后面是强制关键字参数,具体介绍见强制关键字参数。

python3.8版本引入了强制位置参数(Positional-Only Parameters),也就是我们可以使用反斜杠 / 语法来定义位置参数了,可以写成如下形式:

来看下面的例子:

python3.8运行:

不能使用关键字参数形式赋值了。

可变参数 (varargs argument) 就是传入的参数个数是可变的,可以是0-n个,使用星号( * )将输入参数自动组装为一个元组(tuple):

执行结果:

关键字参数(keyword argument)允许将任意个含参数名的参数导入到python函数中,使用双星号( ** ),在函数内部自动组装为一个字典。

执行结果:

上面介绍的参数可以混合使用:

结果:

注意:由于传入的参数个数不定,所以当与普通参数一同使用时,必须把带星号的参数放在最后。

强制关键字参数(Keyword-Only Arguments)是python3引入的特性,可参考:。 使用一个星号隔开:

在位置参数一节介绍过星号前面的参数可以是位置参数和关键字参数。星号后面的参数都是强制关键字参数,必须以指定参数名的方式传参,如果强制关键字参数没有设置默认参数,调用函数时必须传参。

执行结果:

也可以在可变参数后面命名关键字参数,这样就不需要星号分隔符了:

执行结果:

在Python对象及内存管理机制中介绍了python中的参数传递属于对象的 引用传递 (pass by object reference),在编写函数的时候需要特别注意。

先来看个例子:

执行结果:

l1 和 l2指向相同的地址,由于列表可变,l1改变时,l2也跟着变了。

接着看下面的例子:

结果:

l1没有变化!为什么不是[1, 2, 3, 4]呢?

l = l + [4]表示创建一个“末尾加入元素 4“的新列表,并让 l 指向这个新的对象,l1没有进行任何操作,因此 l1 的值不变。如果要改变l1的值,需要加一个返回值:

结果:

下面的代码执行结果又是什么呢?

执行结果:

和第一个例子一样,l1 和 l2指向相同的地址,所以会一起改变。这个问题怎么解决呢?

可以使用下面的方式:

也可以使用浅拷贝或者深度拷贝,具体使用方法可参考Python对象及内存管理机制。这个问题在Python编程时需要特别注意。

本文主要介绍了python函数的几种参数类型:必选参数、可选参数、可变参数、位置参数、强制位置参数、关键字参数、强制关键字参数,注意他们不是完全独立的,比如必选参数、可选参数也可以是关键字参数,位置参数可以是必选参数或者可选参数。

另外,python中的参数传递属于对象的 引用传递 ,在对可变数据类型进行参数传递时需要特别注意,如有必要,使用python的拷贝方法。

参考文档:

--THE END--


当前标题:python3.7函数 python377怎么用
浏览路径:http://cqcxhl.com/article/docpeco.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP