重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
def Fibonacci(n):
富源ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为成都创新互联公司的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18980820575(备注:SSL证书合作)期待与您的合作!
if n == 1:
return 1
dic = [-1 for i in xrange(n)]
dic[0], dic[1] = 1, 1
helper(n-1, dic)
linesize = 5
file=open('Fibonacci.txt', 'w')
for loop in range(len(dic)/linesize):
line = []
for i in range(linesize):
line.append(dic[i + linesize * loop])
file.write("\t".join([str(x) for x in line]) + "\n")
file.close()
def helper(n, dic):
if dic[n] 0:
dic[n] = helper(n-1, dic)+helper(n-2, dic)
return dic[n]
你看看你递归代码的复杂度 是O(2^n) 而第二个的复杂度是O(n) 运行效率当然不同COUNTER = 0
def fibn(n):
global COUNTER
COUNTER += 1
if n == 0:
return 1
elif n == 1:
return 1
else:
return fibn(n-1) + fibn(n-2)
statistics = []
for i in range(35):
COUNTER = 0
fibn(i + 1)
statistics.append(((i + 1), COUNTER))
print statistics[(1, 1), (2, 3), (3, 5), (4, 9), (5, 15), (6, 25), (7, 41), (8, 67), (9, 109), (10, 177), (11, 287), (12, 465), (13, 753), (14, 1219), (15, 1973), (16, 3193), (17, 5167), (18, 8361), (19, 13529), (20, 21891), (21, 35421), (22, 57313), (23, 92735), (24, 150049), (25, 242785), (26, 392835), (27, 635621), (28, 1028457), (29, 1664079), (30, 2692537), (31, 4356617), (32, 7049155), (33, 11405773), (34, 18454929), (35, 29860703)]做了一个简单的proflieimport cProfile
import pstats
def fibn(n):
if n == 0:
return 1
elif n == 1:
return 1
else:
return fibn(n-1) + fibn(n-2)
print ' i, calls, time'
for i in range(50):
pr = cProfile.Profile()
pr.enable()
fibn(i)
pr.disable()
stats = pstats.Stats(pr)
stats.strip_dirs()
st = stats.stats[('test1.py', 3, 'fibn')]
print '%3d, %10d, %8f' % (i, st[1], st[3])
i, calls, time 0, 1, 0.000000 1, 1, 0.000001 2, 3, 0.000003 3, 5, 0.000005 4, 9, 0.000008 5, 15, 0.000012 6, 25, 0.000020 7, 41, 0.000033 8, 67, 0.000165 9, 109, 0.000088 10, 177, 0.000141 11, 287, 0.000228 12, 465, 0.000450 13, 753, 0.000601 14, 1219, 0.001016 15, 1973, 0.003561 16, 3193, 0.002593 17, 5167, 0.004372 18, 8361, 0.007097 19, 13529, 0.011073 20, 21891, 0.018552 21, 35421, 0.032467 22, 57313, 0.051762 23, 92735, 0.095383 24, 150049, 0.133490 25, 242785, 0.212390 26, 392835, 0.352861 27, 635621, 0.578204 28, 1028457, 0.987839 29, 1664079, 1.506812 30, 2692537, 2.682802 31, 4356617, 3.998936 32, 7049155, 8.089419 33, 11405773, 13.058235 34, 18454929, 23.930004 35, 29860703, 36.503880目测fibn(50)要算出来需要两周
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13,特别指出:第0项是0,第1项是第一个1。从第三项开始,每一项都等于前两项之和。
# 判断输入的值是否合法
if nterms = 0:
print("请输入一个正整数。")
elif nterms == 1:
print("斐波那契数列:")
print(n1)
else:
print("斐波那契数列:")
print(n1,",",n2,end=" , ")
while count nterms:
nth = n1 + n2
print(nth,end=" , ")
# 更新值
n1 = n2
n2 = nth
count += 1
平方与前后项
从第二项开始(构成一个新数列,第一项为1,第二项为2,……),每个偶数项的平方都比前后两项之积多1,每个奇数项的平方都比前后两项之积少1。如:第二项 1 的平方比它的前一项 1 和它的后一项 2 的积 2 少 1,第三项 2 的平方比它的前一项 1 和它的后一项 3 的积 3 多 1。