重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

dbdynamics DBdynamics音箱

哪个大学的空气动力学比较好呢~?

北京航空航天大学空气动力学比较好。

雨山网站制作公司哪家好,找成都创新互联!从网页设计、网站建设、微信开发、APP开发、成都响应式网站建设公司等网站项目制作,到程序开发,运营维护。成都创新互联从2013年创立到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选成都创新互联

学校学术资源

馆藏资源

截至2010年底,馆藏印刷型书刊资料累计达249万册,引进数据库总量达65个,电子图书总量达163.3万种,外文电子期刊达1.2万种;图书馆加入了北京市、工业和信息化部和全国范围内的文献保障体系,包括全国高校文献保障系统(CALIS)、北京地区高校图书馆文献资源保障体系(BALIS)、工信部七馆联席会、北京高校图书馆联合体等,与国家图书馆、国家科技文献中心、中科院文献中心、北大、清华、人大、北师大等北京地区近80余所图书馆以及全国100余所高校图书馆实现了馆际互借、资源共享。

学术期刊

《北京航空航天大学学报(社会科学版)》:《中国期刊全文数据库( CJFD )》、《中国学术期刊中和评价数据库》、《中文科技期刊数据库》、《中国社会科学引文数据库》、《中国科学引文数据库》等多家数据库的全文收录期刊,RCCSE中国核心学术期刊。

《北京航空航天大学学报(自然科学版)》:Ei、CA、INSPEC、AJ、Aerospace(IAA、STAR)收录期刊,中国自然科学技术核心期刊,是“中国科学引文数据库”、“中国学术期刊综合评价数据库”、“中国导弹与航天文摘”、“中国数学文摘”、“中国物理文摘”等多家数据库和检索刊物的收录刊源。

《单片机与嵌入式系统应用》

《复合材料学报》

《大学英语》

《航空知识》

《Propulsion and Power Research》

《Frontiers of Computer Science》

空气动力学,是流体力学的一个分支,主要研究物体在空气或其它气体中运动时而产生各种力。空气动力学为流体力学在工程上的应用力学,特别讨论在马赫数大于0.3的流场情形。

空气动力学因为讨论的状况接近真实流体,考虑了真实流体的黏滞性、可压缩性、三维运动等特点,所以得到的计算方程式比较复杂,通常为非线性的偏微分方程式形式。这种方程在绝大多数的情况下都难以求得解析解的,加之早期计算技术还比较落后,所以当时大多是以实验的方式来求得所需的数据。

随着计算机技术的迅速发展,使用计算机进行大量数值运算来求解空气动力学方程式成为可能。利用数值法以及计算流体力学方法,可以求出非线性偏微分方程的数值解,得到所需要的各种数据,从而省去了大量的实验成本。由于数学模型的不断完善以及计算机计算能力的不断提高,现在已经可以采用电脑模拟流场的方式来取代部分空气动力学实验。

DBA必备的23款最佳SQL管理工具,精选

因为市场上有许多的SQL管理工具,所以要为SQL项目管理选择工具是一件有挑战性的事。为大家推荐23款SQL工具的精选列表,希望朋友们喜欢。其中几款已经在昨天的SQL查询优化工具一文中,做过推荐。

Aqua Data Studio是一个功能丰富的通用SQL集成开发环境(IDE),它使数据库开发人员,DBA和数据/业务分析人员能够从单个界面开发,管理和分析30多个平台的数据。

特征:

dbForge Studio for SQL Server是一个功能强大的IDE,用于SQL Server管理,管理,开发,数据报告,分析等等。执行复杂数据库任务的SQL开发人员和DBA可以使用GUI工具来加速几乎所有数据库体验,例如设计数据库,编写SQL代码,比较数据库,同步模式和数据,生成有意义的测试数据等等。

特征:

dbWatch是一个完整的数据库监控和管理解决方案,适用于SQL Server,Oracle,PostgreSQL,Sybase,MySQL和Azure。专为在大型内部部署,混合或云数据库环境中进行主动管理和日常维护自动化而设计。

特征:

Jet Profiler for MySQL是MySQL数据库服务器的实时查询性能和诊断工具。该工具自2009年开发,非常稳定。

特征:

Adminer是一个用于管理数据库,表,关系,索引和用户的SQL管理工具。它支持所有流行的数据库管理系统,如MySQL,PostgreSQL,SQLite,MS SQL,Oracle和MongoDB。

特征:

它是一种用于分析微软SQL Server数据库结构差异的SQL管理工具。它允许比较数据库对象,如表,列,索引,外键,模式等。

特征:

EMS SQL Manager允许用户创建和编辑SQL Server数据库对象,并创建,修改,执行和保存SQL查询。

特征:

它是一个基于JAVA的数据库管理工具。这种符合JDBC的SQL管理工具允许用户查看数据库结构并发出SQL命令。它还支持Firebird,微软Access,微软SQL Server,MySQL,Oracle,Sybase等数据库。

特征:

SQLite Database Browser是一个开源SQL工具,允许用户创建,设计和编辑SQLite数据库文件。它允许用户显示由它们和应用本身发出的所有SQL命令的日志。

特征:

DBeaver是一个面向开发人员和数据库管理员的开源数据库工具。它支持JDBC兼容的数据库,如MySQL,Oracle,IBM DB2,SQL Server,Firebird,SQLite和Sybase。

特征:

DbVisualizer Free是一个SQL管理工具。它允许用户管理各种数据库,包括Oracle,Sybase,SQL Server,MySQL,Informix,H3和SQLite。

特征:

HeidiSQL是另一种可靠的SQL管理工具。它使用流行的MySQL服务器,微软SQL数据库和PostgreSQL设计。它允许用户浏览和编辑数据,创建和编辑表,视图,触发器和预定事件。

特征:

FlySpeed SQL Query是所有数据库用户和开发人员的数据处理工具。它允许用户在不熟悉SQL语法的情况下在不同的数据库服务器上构建查询。

特征:

SQL Diagnostic Manager是Idera开发的性能监控工具。它提供诊断解决方案,帮助用户评估其SQL Server中的运行状况和性能。

特征:

ManageEngine开发的免费SQL性能监控工具。它允许用户密切关注SQL Server性能!此工具还可以帮助用户监控SQL Server的性能和可用性。它可以与MS SQL 2012和2014等所有MS SQL版本一起使用。

特征:

ApexSQL Monitor是一个基于Web的SQL管理应用程序。它为监控多个SQL Server实例提供支持。

特征:

适用于微软SQL Server的AppDynamics数据库管理产品的一种全面SQL工具。它用于监控SQL Server的2000,2005,2008,2012和2014版本。

特征:

Toad是另一个SQL Server DBMS工具。它通过广泛的自动化,直观的工作流程和内置的专业知识最大化了生产力。此SQL管理工具可解决问题,管理更改并提升最高级别的代码质量。

特征:

Zenoss提供ZenPacks来管理微软SQL Server,MySQL,Oracle数据库和PostgreSQL。每个ZenPack都具有每个平台的特定功能,并提供可用的API来确定应监控的内容。

特征:

Lepide的SQL Server Storage Manager是一个用于分析SQL Server性能的开源实用程序。它提供了对存储空间和性能的完全可视性。

特征:

SQL Server Management Studio Express是一个用于访问,管理和开发SQL所有组件的开源工具。此工具支持SQL Server的大多数管理任务。

特征:

SolarWinds Database Performance Analyzer是用于数据库管理的性能监视和分析工具。它还找出了瓶颈的原因并降低了数据库操作的总体成本。

特征:

Sequel Pro是一款快速,易用的数据库管理工具,适用于MySQL。此SQL管理工具有助于与数据库进行交互。使用此软件添加新数据库,添加新表,添加新行和任何其他类型的数据库也很容易。

特征:

数据库设计过程中,对于大批量的数据如何进行数据库优化?

实例讲解MYSQL数据库的查询优化技术

作者:佚名 文章来源:未知 点击数:2538 更新时间:2006-1-19

数据库系统是管理信息系统的核心,基于数据库的联机事务处理(OLTP)以及联机分析处理(OLAP)是银行、企业、政府等部门最为重要的计算机应用之一。从大多数系统的应用实例来看,查询操作在各种数据库操作中所占据的比重最大,而查询操作所基于的SELECT语句在SQL语句中又是代价最大的语句。举例来说,如果数据的量积累到一定的程度,比如一个银行的账户数据库表信息积累到上百万甚至上千万条记录,全表扫描一次往往需要数十分钟,甚至数小时。如果采用比全表扫描更好的查询策略,往往可以使查询时间降为几分钟,由此可见查询优化技术的重要性。

笔者在应用项目的实施中发现,许多程序员在利用一些前端数据库开发工具(如PowerBuilder、Delphi等)开发数据库应用程序时,只注重用户界面的华丽,并不重视查询语句的效率问题,导致所开发出来的应用系统效率低下,资源浪费严重。因此,如何设计高效合理的查询语句就显得非常重要。本文以应用实例为基础,结合数据库理论,介绍查询优化技术在现实系统中的运用。

分析问题

许多程序员认为查询优化是DBMS(数据库管理系统)的任务,与程序员所编写的SQL语句关系不大,这是错误的。一个好的查询计划往往可以使程序性能提高数十倍。查询计划是用户所提交的SQL语句的集合,查询规划是经过优化处理之后所产生的语句集合。DBMS处理查询计划的过程是这样的:在做完查询语句的词法、语法检查之后,将语句提交给DBMS的查询优化器,优化器做完代数优化和存取路径的优化之后,由预编译模块对语句进行处理并生成查询规划,然后在合适的时间提交给系统处理执行,最后将执行结果返回给用户。在实际的数据库产品(如Oracle、Sybase等)的高版本中都是采用基于代价的优化方法,这种优化能根据从系统字典表所得到的信息来估计不同的查询规划的代价,然后选择一个较优的规划。虽然现在的数据库产品在查询优化方面已经做得越来越好,但由用户提交的SQL语句是系统优化的基础,很难设想一个原本糟糕的查询计划经过系统的优化之后会变得高效,因此用户所写语句的优劣至关重要。系统所做查询优化我们暂不讨论,下面重点说明改善用户查询计划的解决方案。

解决问题

下面以关系数据库系统Informix为例,介绍改善用户查询计划的方法。

1.合理使用索引

索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下:

●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。

●在频繁进行排序或分组(即进行group by或order by操作)的列上建立索引。

●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。

●如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。

●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁操作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。

2.避免或简化排序

应当简化或避免对大型表进行重复的排序。当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素:

●索引中不包括一个或几个待排序的列;

●group by或order by子句中列的次序与索引的次序不一样;

●排序的列来自不同的表。

为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。

3.消除对大型表行数据的顺序存取

在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。避免这种情况的主要方法就是对连接的列进行索引。例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个表要做连接,就要在“学号”这个连接字段上建立索引。

还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。下面的查询将强迫对orders表执行顺序操作:

SELECT * FROM orders WHERE (customer_num=104 AND order_num1001) OR order_num=1008

虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的集合,所以应该改为如下语句:

SELECT * FROM orders WHERE customer_num=104 AND order_num1001

UNION

SELECT * FROM orders WHERE order_num=1008

这样就能利用索引路径处理查询。

4.避免相关子查询

一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。

5.避免困难的正规表达式

MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _”

即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode “98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。

另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3]“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。

6.使用临时表加速查询

把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序操作,而且在其他方面还能简化优化器的工作。例如:

SELECT cust.name,rcvbles.balance,……other columns

FROM cust,rcvbles

WHERE cust.customer_id = rcvlbes.customer_id

AND rcvblls.balance0

AND cust.postcode“98000”

ORDER BY cust.name

如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序:

SELECT cust.name,rcvbles.balance,……other columns

FROM cust,rcvbles

WHERE cust.customer_id = rcvlbes.customer_id

AND rcvblls.balance0

ORDER BY cust.name

INTO TEMP cust_with_balance

然后以下面的方式在临时表中查询:

SELECT * FROM cust_with_balance

WHERE postcode“98000”

临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。

注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。

7.用排序来取代非顺序存取

非顺序磁盘存取是最慢的操作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。

有些时候,用数据库的排序能力来替代非顺序的存取能改进查询。

实例分析

下面我们举一个制造公司的例子来说明如何进行查询优化。制造公司数据库中包括3个表,模式如下所示:

1.part表

零件号 零件描述其他列

(part_num) (part_desc)(other column)

102,032 Seageat 30G disk ……

500,049 Novel 10M network card……

……

2.vendor表

厂商号厂商名其他列

(vendor _num) (vendor_name) (other column)

910,257 Seageat Corp ……

523,045 IBM Corp ……

……

3.parven表

零件号 厂商号 零件数量

(part_num) (vendor_num) (part_amount)

102,032910,2573,450,000

234,423321,0014,000,000

……

下面的查询将在这些表上定期运行,并产生关于所有零件数量的报表:

SELECT part_desc,vendor_name,part_amount

FROM part,vendor,parven

WHERE part.part_num=parven.part_num

AND parven.vendor_num = vendor.vendor_num

ORDER BY part.part_num

如果不建立索引,上述查询代码的开销将十分巨大。为此,我们在零件号和厂商号上建立索引。索引的建立避免了在嵌套中反复扫描。关于表与索引的统计信息如下:

表 行尺寸 行数量 每页行数量 数据页数量

(table) (row size) (Row count) (Rows/Pages) (Data Pages)

part150 10,00025 400

Vendor 150 1,000 25 40

Parven 13  15,000300 50

索引 键尺寸 每页键数量 页面数量

(Indexes) (Key Size) (Keys/Page) (Leaf Pages)

part 4500 20

Vendor4500 2

Parven8250 60

看起来是个相对简单的3表连接,但是其查询开销是很大的。通过查看系统表可以看到,在part_num上和vendor_num上有簇索引,因此索引是按照物理顺序存放的。parven表没有特定的存放次序。这些表的大小说明从缓冲页中非顺序存取的成功率很小。此语句的优化查询规划是:首先从part中顺序读取400页,然后再对parven表非顺序存取1万次,每次2页(一个索引页、一个数据页),总计2万个磁盘页,最后对vendor表非顺序存取1.5万次,合3万个磁盘页。可以看出在这个索引好的连接上花费的磁盘存取为5.04万次。

实际上,我们可以通过使用临时表分3个步骤来提高查询效率:

1.从parven表中按vendor_num的次序读数据:

SELECT part_num,vendor_num,price

FROM parven

ORDER BY vendor_num

INTO temp pv_by_vn

这个语句顺序读parven(50页),写一个临时表(50页),并排序。假定排序的开销为200页,总共是300页。

2.把临时表和vendor表连接,把结果输出到一个临时表,并按part_num排序:

SELECT pv_by_vn,* vendor.vendor_num

FROM pv_by_vn,vendor

WHERE pv_by_vn.vendor_num=vendor.vendor_num

ORDER BY pv_by_vn.part_num

INTO TMP pvvn_by_pn

DROP TABLE pv_by_vn

这个查询读取pv_by_vn(50页),它通过索引存取vendor表1.5万次,但由于按vendor_num次序排列,实际上只是通过索引顺序地读vendor表(40+2=42页),输出的表每页约95行,共160页。写并存取这些页引发5*160=800次的读写,索引共读写892页。

3.把输出和part连接得到最后的结果:

SELECT pvvn_by_pn.*,part.part_desc

FROM pvvn_by_pn,part

WHERE pvvn_by_pn.part_num=part.part_num

DROP TABLE pvvn_by_pn

这样,查询顺序地读pvvn_by_pn(160页),通过索引读part表1.5万次,由于建有索引,所以实际上进行1772次磁盘读写,优化比例为30∶1。笔者在Informix Dynamic

Sever上做同样的实验,发现在时间耗费上的优化比例为5∶1(如果增加数据量,比例可能会更大)。

小结

20%的代码用去了80%的时间,这是程序设计中的一个著名定律,在数据库应用程序中也同样如此。我们的优化要抓住关键问题,对于数据库应用程序来说,重点在于SQL的执行效率。查询优化的重点环节是使得数据库服务器少从磁盘中读数据以及顺序读页而不是非顺序读页。


文章标题:dbdynamics DBdynamics音箱
标题路径:http://cqcxhl.com/article/doepcje.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP