重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
导读:
Redis官方号称支持并发11万读操作,并发8万写操作。由于优异的性能和方便的操作,相信很多人都在项目中都使用了Redis,为了不让应用过分的依赖 Redis服务,Redis的作用只作为提升应用并发和降低应用响应时间存在,即使Redis出现异常,应用程序也不应该出现提供服务失败问题,对此拍拍信最近安排了一次全环境的Redis Cluster 宕机演练。
本文作者系拍拍信架构负责人朱荣松和拍拍信架构开发工程师许彬,授权“技术锁话”进行发布。
Redis 集群环境:
1. 测试环境:
Redis Cluster 配置 :Redis 3主 3从 一共6个节点。
2. 预发环境:
Redis Cluster 配置 :Redis 3主 3从 一共6个节点。
下面是我们操作的时间线:
第一天
程序运行中关闭任意一台从节点,测试一天均无异常。
第二天
程序运行中关闭任意一台从节点,程序未发现异常,测试一天未发现异常。
第三天
预发环境有应用发版,出现异常程序无法启动。
……
1. 测试与预发环境目前关闭的都是任意一台Redis从节点。
2. 测试环境经过反复测试无问题才开始关闭预发环境节点。
3. 预发环境重启被关闭的Redis节点后异常消失。
4. 连接Redis客户端使用的是Java语言中使用范围较广的Jedis。
那么为什么测试环境在经过反复测试没有问题,到预发环境会出现问题?
分析问题前先简单解释下Redis Cluster实现原理。简单来说Redis Cluster中内置了 16384 个哈希槽,当需要在 Redis Cluster中存取一个 key或者value时,Redis 客户端先对 key 使用 crc16 算法算出一个结果,然后把结果对 16384 求余数( 算法为:crc16(key)mod 16384),这样每个 key 都会对应一个编号在 0-16383 之间的哈希槽,值得注意的是这个计算key是在哪个槽上的操作是Redis 客户端做的操作,Java中常用的客户端为Jedis 这个也是被Spring推荐的一种客户端。
注: 如果有人好奇为什么Redis Cluster为什么会使用16384也就是2^14个槽。可以查看 Github https://github.com/antirez/redis/issues/2576作者对此进行了解释。
图1异常很明显抛出的是连接异常
查看了Jedis的源码后发现初始化Redis Cluster的槽信息时,调用initializeSlotsCache()方法时出现异常。图2 为此方法的具体实现,分析代码发现此代码的目的应该是需要cache Redis Cluster槽信息,由于代码中有break,所以是只需要连接Redis获取一次信息即可。细一看此代码应该是有Bug,Try 的范围没有覆盖到Jedis连接的操作,如果Jedis连接失败直接抛出连接失败异常,此循环会直接退出,与代码实际预期不符合。
图2
由此引发另一个思考,是不是我关闭的节点正好为循环的第一个节点导致此问题。尝试关闭另外一台从节点后程序正常启动。那么Jedis加载的节点顺序是什么,似乎Jedis对节点顺序进行了排序操作。在查看源码后发现Jedis重写了Redis节点配置类的hashCode方法。
图3
图4
下面简单测试下如果配置为:jedis-01.test.com、jedis-02.test.com、jedis-03.test.com、jedis-04.test.com、jedis-05.test.com、jedis-05.test.com输出顺序是什么。
图5
输出结果:
[redis-06.test.com:6379,redis-04.test.com:6379, redis-01.test.com:6379, redis-03.test.com:6379, redis-02.test.com:6379,redis-05.test.com:6379]
也就是说如果关闭redis-06.test.com:6379这台节点,程序就会出现启动失败问题。
问题定位后首先去Github上的查看相关问题是否有人遇到,在查询后发现此问题有人在去年11月提了PR解决了此问题,链接如下:
https://github.com/xetorthio/jedis/pull/1633
官方目前释放出了2.10.0-m1和3.0.0-m1中解决了此问题,但是由于不是Release版本使用还得注意。解决的办法为图6,和图2对比可以发现图6对Jedis的实例化也进行了try catch。
图6
六、思考
图7
那么问题来了多少节点异常会导致程序读写操作出现异常,下面我们也做了个简单的测试用于统计程序运行中,关闭Redis节点后程序的出错情况,以下测试表1仅供参考。
场景 | 操作(多节点均同时操作) | Redis写总量 | Redis读总量 | 错误量 | 总耗时(s) | 错误率 |
程序运行中 | 关主(关任一主) | 100000 | 100000 | 3084 | 100 | 0.031 |
关主(关任一主) | 100000 | 100000 | 1482 | 102 | 0.015 | |
关主(关任一主) | 100000 | 100000 | 3053 | 97.6 | 0.031 | |
关从(关任一从) | 100000 | 100000 | 0 | 109.2 | 0 | |
关从(关任一从) | 100000 | 100000 | 0 | 90.1 | 0 | |
关从(关任一从) | 100000 | 100000 | 0 | 88.9 | 0 | |
主从一起关(关任一对) | 100000 | 100000 | 32613 | 210.1 | 0.326 | |
主从一起关(关任一对) | 100000 | 100000 | 29148 | 169.8 | 0.291 | |
主从一起关(关任一对) | 100000 | 100000 | 32410 | 173.7 | 0.324 | |
所有主全关 | 100000 | 100000 | 100000 | 353.4 | 1 | |
所有从全关 | 100000 | 100000 | 0 | 87.7 | 0 | |
只留一台主 | 100000 | 100000 | 100000 | 357.1 | 1 |
表1
从测试结果看,集群Master的选举过程是由Master参与选举的。
1. 如果半数以上 Master 处于关闭状态那么整个集群处于不可用状态。
2. 关闭任意一对主从节点会导致部分(大约为整个集群的1/3)失败。
3. 关闭任意一主,会导致部分写操作失败,是由于从节点不能执行写操作,在Slave升级为Master期间会有少量的失败。
4. 关闭从节点对于整个集群没有影响。