重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

go语言底层解剖 go语言的底层是用什么实现的

goland map底层原理

map 是Go语言中基础的数据结构,在日常的使用中经常被用到。但是它底层是如何实现的呢?

成都创新互联长期为上千客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为静乐企业提供专业的网站设计制作、成都网站制作静乐网站改版等技术服务。拥有10年丰富建站经验和众多成功案例,为您定制开发。

总体来说golang的map是hashmap,是使用数组+链表的形式实现的,使用拉链法消除hash冲突。

golang的map由两种重要的结构,hmap和bmap(下文中都有解释),主要就是hmap中包含一个指向bmap数组的指针,key经过hash函数之后得到一个数,这个数低位用于选择bmap(当作bmap数组指针的下表),高位用于放在bmap的[8]uint8数组中,用于快速试错。然后一个bmap可以指向下一个bmap(拉链)。

Golang中map的底层实现是一个散列表,因此实现map的过程实际上就是实现散表的过程。在这个散列表中,主要出现的结构体有两个,一个叫 hmap (a header for a go map),一个叫 bmap (a bucket for a Go map,通常叫其bucket)。这两种结构的样子分别如下所示:

hmap :

图中有很多字段,但是便于理解map的架构,你只需要关心的只有一个,就是标红的字段: buckets数组 。Golang的map中用于存储的结构是bucket数组。而bucket(即bmap)的结构是怎样的呢?

bucket :

相比于hmap,bucket的结构显得简单一些,标红的字段依然是“核心”,我们使用的map中的key和value就存储在这里。“高位哈希值”数组记录的是当前bucket中key相关的“索引”,稍后会详细叙述。还有一个字段是一个指向扩容后的bucket的指针,使得bucket会形成一个链表结构。例如下图:

由此看出hmap和bucket的关系是这样的:

而bucket又是一个链表,所以,整体的结构应该是这样的:

哈希表的特点是会有一个哈希函数,对你传来的key进行哈希运算,得到唯一的值,一般情况下都是一个数值。Golang的map中也有这么一个哈希函数,也会算出唯一的值,对于这个值的使用,Golang也是很有意思。

Golang把求得的值按照用途一分为二:高位和低位。

如图所示,蓝色为高位,红色为低位。 然后低位用于寻找当前key属于hmap中的哪个bucket,而高位用于寻找bucket中的哪个key。上文中提到:bucket中有个属性字段是“高位哈希值”数组,这里存的就是蓝色的高位值,用来声明当前bucket中有哪些“key”,便于搜索查找。 需要特别指出的一点是:我们map中的key/value值都是存到同一个数组中的。数组中的顺序是这样的:

并不是key0/value0/key1/value1的形式,这样做的好处是:在key和value的长度不同的时候,可 以消除padding(内存对齐)带来的空间浪费 。

现在,我们可以得到Go语言map的整个的结构图了:(hash结果的低位用于选择把KV放在bmap数组中的哪一个bmap中,高位用于key的快速预览,用于快速试错)

map的扩容

当以上的哈希表增长的时候,Go语言会将bucket数组的数量扩充一倍,产生一个新的bucket数组,并将旧数组的数据迁移至新数组。

加载因子

判断扩充的条件,就是哈希表中的加载因子(即loadFactor)。

加载因子是一个阈值,一般表示为:散列包含的元素数 除以 位置总数。是一种“产生冲突机会”和“空间使用”的平衡与折中:加载因子越小,说明空间空置率高,空间使用率小,但是加载因子越大,说明空间利用率上去了,但是“产生冲突机会”高了。

每种哈希表的都会有一个加载因子,数值超过加载因子就会为哈希表扩容。

Golang的map的加载因子的公式是:map长度 / 2^B(这是代表bmap数组的长度,B是取的低位的位数)阈值是6.5。其中B可以理解为已扩容的次数。

当Go的map长度增长到大于加载因子所需的map长度时,Go语言就会将产生一个新的bucket数组,然后把旧的bucket数组移到一个属性字段oldbucket中。注意:并不是立刻把旧的数组中的元素转义到新的bucket当中,而是,只有当访问到具体的某个bucket的时候,会把bucket中的数据转移到新的bucket中。

如下图所示:当扩容的时候,Go的map结构体中,会保存旧的数据,和新生成的数组

上面部分代表旧的有数据的bucket,下面部分代表新生成的新的bucket。蓝色代表存有数据的bucket,橘黄色代表空的bucket。

扩容时map并不会立即把新数据做迁移,而是当访问原来旧bucket的数据的时候,才把旧数据做迁移,如下图:

注意:这里并不会直接删除旧的bucket,而是把原来的引用去掉,利用GC清除内存。

map中数据的删除

如果理解了map的整体结构,那么查找、更新、删除的基本步骤应该都很清楚了。这里不再赘述。

值得注意的是,找到了map中的数据之后,针对key和value分别做如下操作:

1

2

3

4

1、如果``key``是一个指针类型的,则直接将其置为空,等待GC清除;

2、如果是值类型的,则清除相关内存。

3、同理,对``value``做相同的操作。

4、最后把key对应的高位值对应的数组index置为空。

Go语言的跨平台能力到底有多强?看完你就知道了

对比于其他语言的程序,Go语言的跨平台能力是真的强,拿.Net和JAVA来说吧,.Net在.Net core出现之前是不能跨平台的,只能在windows上编译运行,即使是.net core出现以后,跨平台的程序也是相当的麻烦。而java虽然一直都可以跨平台,但是运行JAVA程序的机器上也必须要有JAVA程序运行环境JRE。而相对于Go程序,跨平台就简单的多了,只需要在编译指定目标程序运行的架构和环境即可编译出指定操作系统和架构的程序。

以上是指定了go的环境变量后执行的go build命令进行目标程序的构建,这种方式会一直生效的,如果不让他一直生效,可以在构建的时候临时指定环境变量,下面以window的环境为例,来介绍临时指定环境变量的方式构建可以在Linux环境下运行的可执行程序:

可以根据不同的架构和操作系统将其编写为不同的.bat的可执行文件放置在程序的根目录,Linux的和MAC的也一样编写成脚本文件放置在程序的根目录,这样在构建的时候就不用再敲命令了,直接运行脚本就可以了。

Java程序编译打包后为war包或者是java包,必须执行java -jar 命令或者将其放置到tomcat的指定目录下,运行tomcat程序。而Go语言编写的程序最终为可执行的文件(window下编译出的是.exe的可执行文件),只需要将其赋予可执行的权限就可以直接运行了。

构建JAVA程序的镜像需要指定java的基础镜像,否则就需要在镜像中安装java的运行环境了,下面展示的是构建的一个JAVA程序的镜像,构建出来镜像的体积相对比较大

而Go程序制作出的镜像就不需要安装任何的依赖环境,因为他在打包的时候就已经将依赖的包一块打包到一起了

拿着这个镜像就可以到处运行了。

通过对比我们可以发现,如果没有之前的技术和业务的积累,重新开发一个新的项目,使用go去开发无疑是最容易上手的,所以现在很多公司都使用go进行开发,也逐渐将其他语言的项目逐步的用go语言进行改造。其实用什么语言不重要,合适的才重要,开发项目在选择语言的时候也会综合多方面来考虑选择合适的语言和架构,毕竟很多公司都不是搞研究的,都需要项目来赚钱,所以开发的速度、客户的满意度、项目交付的时间才是驱动公司技术的主要因素。

我们个人也应该不断完善自己的技术栈,不应该太依靠某种语言,最重要的还是自己的架构思想和底层架构知识,只有掌握了这些才能够不被 社会 和公司“优化”。

【golang详解】go语言GMP(GPM)原理和调度

Goroutine调度是一个很复杂的机制,下面尝试用简单的语言描述一下Goroutine调度机制,想要对其有更深入的了解可以去研读一下源码。

首先介绍一下GMP什么意思:

G ----------- goroutine: 即Go协程,每个go关键字都会创建一个协程。

M ---------- thread内核级线程,所有的G都要放在M上才能运行。

P ----------- processor处理器,调度G到M上,其维护了一个队列,存储了所有需要它来调度的G。

Goroutine 调度器P和 OS 调度器是通过 M 结合起来的,每个 M 都代表了 1 个内核线程,OS 调度器负责把内核线程分配到 CPU 的核上执行

模型图:

避免频繁的创建、销毁线程,而是对线程的复用。

1)work stealing机制

当本线程无可运行的G时,尝试从其他线程绑定的P偷取G,而不是销毁线程。

2)hand off机制

当本线程M0因为G0进行系统调用阻塞时,线程释放绑定的P,把P转移给其他空闲的线程执行。进而某个空闲的M1获取P,继续执行P队列中剩下的G。而M0由于陷入系统调用而进被阻塞,M1接替M0的工作,只要P不空闲,就可以保证充分利用CPU。M1的来源有可能是M的缓存池,也可能是新建的。当G0系统调用结束后,根据M0是否能获取到P,将会将G0做不同的处理:

如果有空闲的P,则获取一个P,继续执行G0。

如果没有空闲的P,则将G0放入全局队列,等待被其他的P调度。然后M0将进入缓存池睡眠。

如下图

GOMAXPROCS设置P的数量,最多有GOMAXPROCS个线程分布在多个CPU上同时运行

在Go中一个goroutine最多占用CPU 10ms,防止其他goroutine被饿死。

具体可以去看另一篇文章

【Golang详解】go语言调度机制 抢占式调度

当创建一个新的G之后优先加入本地队列,如果本地队列满了,会将本地队列的G移动到全局队列里面,当M执行work stealing从其他P偷不到G时,它可以从全局G队列获取G。

协程经历过程

我们创建一个协程 go func()经历过程如下图:

说明:

这里有两个存储G的队列,一个是局部调度器P的本地队列、一个是全局G队列。新创建的G会先保存在P的本地队列中,如果P的本地队列已经满了就会保存在全局的队列中;处理器本地队列是一个使用数组构成的环形链表,它最多可以存储 256 个待执行任务。

G只能运行在M中,一个M必须持有一个P,M与P是1:1的关系。M会从P的本地队列弹出一个可执行状态的G来执行,如果P的本地队列为空,就会想其他的MP组合偷取一个可执行的G来执行;

一个M调度G执行的过程是一个循环机制;会一直从本地队列或全局队列中获取G

上面说到P的个数默认等于CPU核数,每个M必须持有一个P才可以执行G,一般情况下M的个数会略大于P的个数,这多出来的M将会在G产生系统调用时发挥作用。类似线程池,Go也提供一个M的池子,需要时从池子中获取,用完放回池子,不够用时就再创建一个。

work-stealing调度算法:当M执行完了当前P的本地队列队列里的所有G后,P也不会就这么在那躺尸啥都不干,它会先尝试从全局队列队列寻找G来执行,如果全局队列为空,它会随机挑选另外一个P,从它的队列里中拿走一半的G到自己的队列中执行。

如果一切正常,调度器会以上述的那种方式顺畅地运行,但这个世界没这么美好,总有意外发生,以下分析goroutine在两种例外情况下的行为。

Go runtime会在下面的goroutine被阻塞的情况下运行另外一个goroutine:

用户态阻塞/唤醒

当goroutine因为channel操作或者network I/O而阻塞时(实际上golang已经用netpoller实现了goroutine网络I/O阻塞不会导致M被阻塞,仅阻塞G,这里仅仅是举个栗子),对应的G会被放置到某个wait队列(如channel的waitq),该G的状态由_Gruning变为_Gwaitting,而M会跳过该G尝试获取并执行下一个G,如果此时没有可运行的G供M运行,那么M将解绑P,并进入sleep状态;当阻塞的G被另一端的G2唤醒时(比如channel的可读/写通知),G被标记为,尝试加入G2所在P的runnext(runnext是线程下一个需要执行的 Goroutine。), 然后再是P的本地队列和全局队列。

系统调用阻塞

当M执行某一个G时候如果发生了阻塞操作,M会阻塞,如果当前有一些G在执行,调度器会把这个线程M从P中摘除,然后再创建一个新的操作系统的线程(如果有空闲的线程可用就复用空闲线程)来服务于这个P。当M系统调用结束时候,这个G会尝试获取一个空闲的P执行,并放入到这个P的本地队列。如果获取不到P,那么这个线程M变成休眠状态, 加入到空闲线程中,然后这个G会被放入全局队列中。

队列轮转

可见每个P维护着一个包含G的队列,不考虑G进入系统调用或IO操作的情况下,P周期性的将G调度到M中执行,执行一小段时间,将上下文保存下来,然后将G放到队列尾部,然后从队列中重新取出一个G进行调度。

除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。

除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。

M0

M0是启动程序后的编号为0的主线程,这个M对应的实例会在全局变量rutime.m0中,不需要在heap上分配,M0负责执行初始化操作和启动第一个G,在之后M0就和其他的M一样了

G0

G0是每次启动一个M都会第一个创建的goroutine,G0仅用于负责调度G,G0不指向任何可执行的函数,每个M都会有一个自己的G0,在调度或系统调用时会使用G0的栈空间,全局变量的G0是M0的G0

一个G由于调度被中断,此后如何恢复?

中断的时候将寄存器里的栈信息,保存到自己的G对象里面。当再次轮到自己执行时,将自己保存的栈信息复制到寄存器里面,这样就接着上次之后运行了。

我这里只是根据自己的理解进行了简单的介绍,想要详细了解有关GMP的底层原理可以去看Go调度器 G-P-M 模型的设计者的文档或直接看源码

参考: ()

()

没有类,C语言有结构体,那么Go的结构体有什么特别之处?

Go语言中没有“类”的概念,也不支持“类”的继承等面向对象的概念。Go语言中通过结构体的内嵌再配合接口比面向对象具有更高的扩展性和灵活性。

自定义类型

在Go语言中有一些基本的数据类型,如string、整型、浮点型、布尔等数据类型, Go语言中可以使用type关键字来定义自定义类型。

自定义类型是定义了一个全新的类型。我们可以基于内置的基本类型定义,也可以通过struct定义。例如:

通过Type关键字的定义,MyInt就是一种新的类型,它具有int的特性。

类型别名

类型别名是Go1.9版本添加的新功能。

类型别名规定:TypeAlias只是Type的别名,本质上TypeAlias与Type是同一个类型。就像一个孩子小时候有小名、乳名,上学后用学名,英语老师又会给他起英文名,但这些名字都指的是他本人。

type TypeAlias = Type

我们之前见过的rune和byte就是类型别名,他们的定义如下:

类型定义和类型别名的区别

类型别名与类型定义表面上看只有一个等号的差异,我们通过下面的这段代码来理解它们之间的区别。

结果显示a的类型是main.NewInt,表示main包下定义的NewInt类型。b的类型是int。MyInt类型只会在代码中存在,编译完成时并不会有MyInt类型。

Go语言中的基础数据类型可以表示一些事物的基本属性,但是当我们想表达一个事物的全部或部分属性时,这时候再用单一的基本数据类型明显就无法满足需求了,Go语言提供了一种自定义数据类型,可以封装多个基本数据类型,这种数据类型叫结构体,英文名称struct。 也就是我们可以通过struct来定义自己的类型了。

Go语言中通过struct来实现面向对象。

结构体的定义

使用type和struct关键字来定义结构体,具体代码格式如下:

其中:

举个例子,我们定义一个Person(人)结构体,代码如下:

同样类型的字段也可以写在一行,

这样我们就拥有了一个person的自定义类型,它有name、city、age三个字段,分别表示姓名、城市和年龄。这样我们使用这个person结构体就能够很方便的在程序中表示和存储人信息了。

语言内置的基础数据类型是用来描述一个值的,而结构体是用来描述一组值的。比如一个人有名字、年龄和居住城市等,本质上是一种聚合型的数据类型

结构体实例化

只有当结构体实例化时,才会真正地分配内存。也就是必须实例化后才能使用结构体的字段。

基本实例化

举个例子:

我们通过.来访问结构体的字段(成员变量),例如p1.name和p1.age等。

匿名结构体

在定义一些临时数据结构等场景下还可以使用匿名结构体。

创建指针类型结构体

我们还可以通过使用new关键字对结构体进行实例化,得到的是结构体的地址。 格式如下:

从打印的结果中我们可以看出p2是一个结构体指针。

需要注意的是在Go语言中支持对结构体指针直接使用.来访问结构体的成员。

取结构体的地址实例化

使用对结构体进行取地址操作相当于对该结构体类型进行了一次new实例化操作。

p3.name = "七米"其实在底层是(*p3).name = "七米",这是Go语言帮我们实现的语法糖。

结构体初始化

没有初始化的结构体,其成员变量都是对应其类型的零值。

使用键值对初始化

使用键值对对结构体进行初始化时,键对应结构体的字段,值对应该字段的初始值。

也可以对结构体指针进行键值对初始化,例如:

当某些字段没有初始值的时候,该字段可以不写。此时,没有指定初始值的字段的值就是该字段类型的零值。

使用值的列表初始化

初始化结构体的时候可以简写,也就是初始化的时候不写键,直接写值:

使用这种格式初始化时,需要注意:

结构体内存布局

结构体占用一块连续的内存。

输出:

【进阶知识点】关于Go语言中的内存对齐推荐阅读:在 Go 中恰到好处的内存对齐

面试题

请问下面代码的执行结果是什么?

构造函数

Go语言的结构体没有构造函数,我们可以自己实现。 例如,下方的代码就实现了一个person的构造函数。 因为struct是值类型,如果结构体比较复杂的话,值拷贝性能开销会比较大,所以该构造函数返回的是结构体指针类型。

调用构造函数

方法和接收者

Go语言中的方法(Method)是一种作用于特定类型变量的函数。这种特定类型变量叫做接收者(Receiver)。接收者的概念就类似于其他语言中的this或者 self。

方法的定义格式如下:

其中,

举个例子:

方法与函数的区别是,函数不属于任何类型,方法属于特定的类型。

指针类型的接收者

指针类型的接收者由一个结构体的指针组成,由于指针的特性,调用方法时修改接收者指针的任意成员变量,在方法结束后,修改都是有效的。这种方式就十分接近于其他语言中面向对象中的this或者self。 例如我们为Person添加一个SetAge方法,来修改实例变量的年龄。

调用该方法:

值类型的接收者

当方法作用于值类型接收者时,Go语言会在代码运行时将接收者的值复制一份。在值类型接收者的方法中可以获取接收者的成员值,但修改操作只是针对副本,无法修改接收者变量本身。

什么时候应该使用指针类型接收者

任意类型添加方法

在Go语言中,接收者的类型可以是任何类型,不仅仅是结构体,任何类型都可以拥有方法。 举个例子,我们基于内置的int类型使用type关键字可以定义新的自定义类型,然后为我们的自定义类型添加方法。

注意事项: 非本地类型不能定义方法,也就是说我们不能给别的包的类型定义方法。

结构体的匿名字段

匿名字段默认采用类型名作为字段名,结构体要求字段名称必须唯一,因此一个结构体中同种类型的匿名字段只能有一个。

嵌套结构体

一个结构体中可以嵌套包含另一个结构体或结构体指针。

嵌套匿名结构体

当访问结构体成员时会先在结构体中查找该字段,找不到再去匿名结构体中查找。

嵌套结构体的字段名冲突

嵌套结构体内部可能存在相同的字段名。这个时候为了避免歧义需要指定具体的内嵌结构体的字段。

结构体的“继承”

Go语言中使用结构体也可以实现其他编程语言中面向对象的继承。

结构体字段的可见性

结构体中字段大写开头表示可公开访问,小写表示私有(仅在定义当前结构体的包中可访问)。

结构体与JSON序列化

JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。易于人阅读和编写。同时也易于机器解析和生成。JSON键值对是用来保存JS对象的一种方式,键/值对组合中的键名写在前面并用双引号""包裹,使用冒号:分隔,然后紧接着值;多个键值之间使用英文,分隔。

结构体标签(Tag)

Tag是结构体的元信息,可以在运行的时候通过反射的机制读取出来。 Tag在结构体字段的后方定义,由一对反引号包裹起来,具体的格式如下:

`key1:"value1" key2:"value2"`

结构体标签由一个或多个键值对组成。键与值使用冒号分隔,值用双引号括起来。键值对之间使用一个空格分隔。 注意事项: 为结构体编写Tag时,必须严格遵守键值对的规则。结构体标签的解析代码的容错能力很差,一旦格式写错,编译和运行时都不会提示任何错误,通过反射也无法正确取值。例如不要在key和value之间添加空格。

例如我们为Student结构体的每个字段定义json序列化时使用的Tag:


网站名称:go语言底层解剖 go语言的底层是用什么实现的
网页地址:http://cqcxhl.com/article/dojjdji.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP