重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
在python中有内置的求对数的函数。
创新互联是一家专注于网站建设、做网站与策划设计,凤阳网站建设哪家好?创新互联做网站,专注于网站建设十载,网设计领域的专业建站公司;建站业务涵盖:凤阳等地区。凤阳做网站价格咨询:18980820575
log()方法返回x的自然对数,对于x0。
语法
以下是log()方法的语法:
#!/usr/bin/python
import math # This will import math module
print "math.log(100.12) : ", math.log(100.12)
print "math.log(100.72) : ", math.log(100.72)
print "math.log(119L) : ", math.log(119L)
print "math.log(math.pi) : ", math.log(math.pi)
当我们运行上面的程序,它会产生以下结果:
math.log(100.12) : 4.60636946656
math.log(100.72) : 4.61234438974
math.log(119L) : 4.77912349311
math.log(math.pi) : 1.14472988585
以后应多使用论坛中的Eviews专区。
ln在Eviews中表示为log,如数学中的ln(Q)在Eviews中表示为log(Q)
直接定义啊 y=log(x) 在软件中log,论文模型中ln不用取对数直接在估计的时候用 log( )就好了
如果真要取的话
quick\ generate series\
输入新变量,比如 r=log( )
r就是取完对数后的序列
在工作文件中先定义一个新的变量Y(假设原变量是w,已存在的变量),然后在工作文件中点击genr,在方程中输入Y=log(w),确定。
series y=log(x)
在最小二乘里面输入log(y) log(x) c也可以
产生个新变量:输入命令y=log()
推荐你去找一个pandas,scipy,pandas,matplotlib库来做,网上有书籍,《利用Python进行数据分析》,基本就是介绍这样内容的,pandas去做数据采集、清洗等都不错,然后利用上面的例子慢慢实现你上面的方法。
python 代码中log表示含义
log表示以e为底数的对数函数符号。其验证代码如下:
a=np.log(np.e )
print(a)
print(np.e)
python中log_inner是log表示以e为底数的对数函数符号。
在数学运算中,如果没有计算器,对于很大的数字相乘,我们花费大量的时间计算,而且一旦出错,就要重新计算,很是麻烦。其实对于数字相乘,不依靠靠计算器,想要准确简单的运算的方法不是没有,那就是对数和指数,他们解决了大数或非常的小的数相乘的繁琐计算。而在python中,也有计算对数的方法,那就是对数函数log函数。本文将向大家介绍log函数的表述语句、参数和返回值,并以实例演示用log函数计算对数的过程。log()函数:返回 x 的自然对数。即返回以 2 为基数的 x 的对数。
Python由荷兰数学和计算机科学研究学会的吉多·范罗苏姆 于1990 年代初设计,作为一门叫做ABC语言的替代品。Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言,随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。Python解释器易于扩展,可以使用C语言或C++(或者其他可以通过C调用的语言)扩展新的功能和数据类型。Python 也可用于可定制化软件中的扩展程序语言。Python丰富的标准库,提供了适用于各个主要系统平台的源码或机器码。
其中有两个非常漂亮的指数函数图就是用python的matplotlib画出来的。这一期,我们将要介绍如何利用python绘制出如下指数函数。
图 1 a1图 1 a1
我们知道当0 ,指数函数 是单调递减的,当a1 时,指数函数是单调递增的。所以我们首先要定义出指数函数,将a值做不同初始化
import math
...
def exponential_func(x, a): #定义指数函数
y=math.pow(a, x)
return y
然后,利用numpy构造出自变量,利用上面定义的指数函数来计算出因变量
X=np.linspace(-4, 4, 40) #构造自变量组
Y=[exponential_func(x) for x in X] #求函数值
有了自变量和因变量的一些散点,那么就可以模拟我们平时画函数操作——描点绘图,利用下面代码就可以实现
import math
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.axisartist as axisartist #导入坐标轴加工模块
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
fig=plt.figure(figsize=(6,4)) #新建画布
ax=axisartist.Subplot(fig,111) #使用axisartist.Subplot方法创建一个绘图区对象ax
fig.add_axes(ax) #将绘图区对象添加到画布中
def exponential_func(x, a=2): #定义指数函数
y=math.pow(a, x)
return y
X=np.linspace(-4, 4, 40) #构造自变量组
Y=[exponential_func(x) for x in X] #求函数值
ax.plot(X, Y) #绘制指数函数
plt.show()
图 2 a=2
图2虽简单,但麻雀虽小五脏俱全,指数函数该有都有,接下来是如何让其看起来像我们在作图纸上面画的那么美观,这里重点介绍axisartist 坐标轴加工类,在的时候我们已经用过了,这里就不再多说了。我们只需要在上面代码后面加上一些代码来将坐标轴好好打扮一番。
图 3 a1 完整代码# -*- coding: utf-8 -*-图 3 a1 完整代码# -*- coding: utf-8 -*-"""Created on Sun Feb 16 10:19:23 2020project name:@author: 帅帅de三叔"""import mathimport numpy as npimport matplotlib.pyplot as pltimport mp