重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
求n的阶乘c语言如下:
专注于为中小企业提供成都网站设计、成都网站建设服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业凭祥免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了上千多家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。
第一步、编程的第一步就是写头文件,对于初学者来说,只写一个头文件就可以了,即#includestdio.h。
第二步、就是定义我们的变量,我们需要定义一个n,用来求他的阶乘,sum用来保存结果,i用来循环。
第三步、就是把sum初始化,为1.千万不要为0,保证后面的结果不出问题。
第四步、就是输入一个n,用来求n的阶乘,别忘了在前面提示一下。
第五步、就是利用for循环来求阶乘。
第六步、就是调用printf(:);函数来输出阶乘结果。
n的阶乘c语言:
n!=1×2×3...xn。
n!=X×(X-1)×(X-2)...×1。
1751年,欧拉以大写字母M表示m阶乘 M=1x2x3...x...m。
#include stdio.h
main()
{
long n,sum=1;//10 以上的阶乘就比较大了
int i;
printf("请输入你要求的阶乘:")
scanf("%d",n);//先输入要求的数
for(i=n;i0;i--)//乘到1为止
{
sum*=i;
}
printf("%d != %d",n,sum);
return 0;
}
方法如下:
/*This program can calculate the factorial of (int n).*/
#include stdio.h
int factorial(int n)
{
return (n == 1)?n:factorial(n-1)*n;//recursion.
}
int main(void)
{
int n,fac;
printf("Please input the value of n:");//initialize n.
scanf("%d",n);
fac = factorial(n)//variable fac is not necessary.
printf("The result is:%d\n",fac);
return 0;
}
相关内容:
阶乘是定义在自然数范围里的(大多科学计算器只能计算 0~69 的阶乘),小数科学计算器没有阶乘功能,如 0.5!,0.65!,0.777!都是错误的。但是,有时候我们会将Gamma 函数定义为非整数的阶乘,因为当 x 是正整数 n 的时候,Gamma 函数的值是 n-1 的阶乘。
阶乘:
阶乘是基斯顿·卡曼(Christian
Kramp,1760~1826)于
1808
年发明的运算符号,是数学术语。
一个正整数的阶乘(英语:factorial)是所有小于及等于该数的正整数的积,并且有0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。
亦即n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
C语言
在
C
语言中,使用循环语句可以很方便的求出阶乘的值,下面介绍一个很简单的阶乘例子。(因为网上多数是比较麻烦的方法)
【计算出“
1!+
2!+
3!+
……
+
10!”的值是多少?】
#includestdio.h
int
main()
{
int
x;
long
j=1,sum=0;
for(x=1;x=10;x++)
{
j*=x;
sum+=j;
}
printf("1!+2!+...+10!=%ld\n",sum);
return
0;
}
/*结果:4037913*/
Pascal中program
test;
varn:longint;
function
jc(n:longint):qword;
begin
if
n=0
then
jc:=1
else
jc:=n*jc(n-1)end;
begin
readln
(n);
writeln
(jc(n))end.
C++
中
#includeiostream
using
namespace
std;
long
long
f(int
n)
{
long
long
e=1;
if(n0)
e=n*f(n-1);
coutn"!="eendl;
return
e;
}
int
main()
{
int
m=20;
f(m);
return
0;
}
以上使用
C++
11
标准
也可以利用积分求浮点数阶乘:
#includecstdio
#includecmath
double
s;
const
double
e=exp(1.0);
double
F(double
t)
{
return
pow(t,s)*pow(e,-t);
}
double
simpson(double
a,double
b)
{
double
c=a+(b-a)/2;
return
(F(a)+4*F(c)+F(b))*(b-a)/6;
}
double
asr(double
a,double
b,double
eps,double
A)
{
double
c=a+(b-a)/2;
double
L=simpson(a,c),R=simpson(c,b);
if(fabs(L+R-A)=15*eps)
return
L+R+(L+R-A)/15.0;
return
asr(a,c,eps/2,L)+asr(c,b,eps/2,R);
}
double
asr(double
a,double
b,double
eps)
{
return
asr(a,b,eps,simpson(a,b));
}
int
main()
{
scanf("%lf",s);
printf("%lf\n",asr(0,1e2,1e-10));
return
0;
}