重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
在 Golang 游戏leaf系列(一) 概述与示例 (下文简称系列一)中,提到过Go模块用于创建能够被 Leaf 管理的 goroutine。Go模块是对golang中go提供一些额外功能。Go提供回调功能,LinearContext提供顺序调用功能。善用 goroutine 能够充分利用多核资源,Leaf 提供的 Go 机制解决了原生 goroutine 存在的一些问题:
平阳ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18982081108(备注:SSL证书合作)期待与您的合作!
我们来看一个例子(可以在 LeafServer 的模块的 OnInit 方法中测试):
这里的 Go 方法接收 2 个函数作为参数,第一个函数会被放置在一个新创建的 goroutine 中执行,在其执行完成之后,第二个函数会在当前 goroutine 中被执行。由此,我们可以看到变量 res 同一时刻总是只被一个 goroutine 访问,这就避免了同步机制的使用。Go 的设计使得 CPU 得到充分利用,避免操作阻塞当前 goroutine,同时又无需为共享资源同步而忧心。
这里主动调用了 d.Cb(-d.ChanCb) ,把这个回调取出来了。实际上,在skeleton.Run里会自己取这个通道
看一下源码:
New方法,会生成指定缓冲长度的ChanCb。然后调用Go方法就是先执行第一个func,然后把第二个放到Cb里。现在手动造一个例子:
这里解释一下,d.Go根据源码来看,实际也是调用了一个协程。然后上面两次d.Go并不能保证先后顺序。目前的输出结果是1+2那个先执行了,把3写入d.ChanCb,然后把3读出来,继续读时,d.ChanCb里没有东西,阻塞了。然后1+1那个协程启动了,最后又读到了2。
现在把time.Sleep(time.Second)的注释解开,会是啥结果呢
这里执行到time.Sleep睡着了,上面两个d.Go仍然是不确定顺序的,但是会各自的function先执行掉,然后陆续把cb写入d.ChanCb。看这次输出,1+2先写进去的。所以最后执行d.Cb时,就把3先读出来了。然后d.ChanCb的长度为1,说明还有一个,就是输出2了。
另外,就是close时会判断g.pendingGo
这个例子的意思很明显,NewLinearContext这种方式,即使先调用的慢了半秒,它还是会先执行完。
这里先是用了一个list,加入的时候用mutexLinearGo锁了,都加到最后。然后新开协程去处理,读的时候从最前面开始读,也要用mutexLinearGo锁。执行的时候,也要上锁mutexExecution,确保f()执行完并且写入g.ChanCb回调,这个mutexExecution锁才会解除。现在可以改造一个带回调的例子:
结果说明,确实是2先被写入了d.ChanCb。
编写过C语言程序的肯定知道通过malloc()方法动态申请内存,其中内存分配器使用的是glibc提供的ptmalloc2。 除了glibc,业界比较出名的内存分配器有Google的tcmalloc和Facebook的jemalloc。二者在避免内存碎片和性能上均比glic有比较大的优势,在多线程环境中效果更明显。
Golang中也实现了内存分配器,原理与tcmalloc类似,简单的说就是维护一块大的全局内存,每个线程(Golang中为P)维护一块小的私有内存,私有内存不足再从全局申请。另外,内存分配与GC(垃圾回收)关系密切,所以了解GC前有必要了解内存分配的原理。
为了方便自主管理内存,做法便是先向系统申请一块内存,然后将内存切割成小块,通过一定的内存分配算法管理内存。 以64位系统为例,Golang程序启动时会向系统申请的内存如下图所示:
预申请的内存划分为spans、bitmap、arena三部分。其中arena即为所谓的堆区,应用中需要的内存从这里分配。其中spans和bitmap是为了管理arena区而存在的。
arena的大小为512G,为了方便管理把arena区域划分成一个个的page,每个page为8KB,一共有512GB/8KB个页;
spans区域存放span的指针,每个指针对应一个page,所以span区域的大小为(512GB/8KB)乘以指针大小8byte = 512M
bitmap区域大小也是通过arena计算出来,不过主要用于GC。
span是用于管理arena页的关键数据结构,每个span中包含1个或多个连续页,为了满足小对象分配,span中的一页会划分更小的粒度,而对于大对象比如超过页大小,则通过多页实现。
根据对象大小,划分了一系列class,每个class都代表一个固定大小的对象,以及每个span的大小。如下表所示:
上表中每列含义如下:
class: class ID,每个span结构中都有一个class ID, 表示该span可处理的对象类型
bytes/obj:该class代表对象的字节数
bytes/span:每个span占用堆的字节数,也即页数乘以页大小
objects: 每个span可分配的对象个数,也即(bytes/spans)/(bytes/obj)waste
bytes: 每个span产生的内存碎片,也即(bytes/spans)%(bytes/obj)上表可见最大的对象是32K大小,超过32K大小的由特殊的class表示,该class ID为0,每个class只包含一个对象。
span是内存管理的基本单位,每个span用于管理特定的class对象, 跟据对象大小,span将一个或多个页拆分成多个块进行管理。src/runtime/mheap.go:mspan定义了其数据结构:
以class 10为例,span和管理的内存如下图所示:
spanclass为10,参照class表可得出npages=1,nelems=56,elemsize为144。其中startAddr是在span初始化时就指定了某个页的地址。allocBits指向一个位图,每位代表一个块是否被分配,本例中有两个块已经被分配,其allocCount也为2。next和prev用于将多个span链接起来,这有利于管理多个span,接下来会进行说明。
有了管理内存的基本单位span,还要有个数据结构来管理span,这个数据结构叫mcentral,各线程需要内存时从mcentral管理的span中申请内存,为了避免多线程申请内存时不断的加锁,Golang为每个线程分配了span的缓存,这个缓存即是cache。src/runtime/mcache.go:mcache定义了cache的数据结构
alloc为mspan的指针数组,数组大小为class总数的2倍。数组中每个元素代表了一种class类型的span列表,每种class类型都有两组span列表,第一组列表中所表示的对象中包含了指针,第二组列表中所表示的对象不含有指针,这么做是为了提高GC扫描性能,对于不包含指针的span列表,没必要去扫描。根据对象是否包含指针,将对象分为noscan和scan两类,其中noscan代表没有指针,而scan则代表有指针,需要GC进行扫描。mcache和span的对应关系如下图所示:
mchache在初始化时是没有任何span的,在使用过程中会动态的从central中获取并缓存下来,跟据使用情况,每种class的span个数也不相同。上图所示,class 0的span数比class1的要多,说明本线程中分配的小对象要多一些。
cache作为线程的私有资源为单个线程服务,而central则是全局资源,为多个线程服务,当某个线程内存不足时会向central申请,当某个线程释放内存时又会回收进central。src/runtime/mcentral.go:mcentral定义了central数据结构:
lock: 线程间互斥锁,防止多线程读写冲突
spanclass : 每个mcentral管理着一组有相同class的span列表
nonempty: 指还有内存可用的span列表
empty: 指没有内存可用的span列表
nmalloc: 指累计分配的对象个数线程从central获取span步骤如下:
将span归还步骤如下:
从mcentral数据结构可见,每个mcentral对象只管理特定的class规格的span。事实上每种class都会对应一个mcentral,这个mcentral的集合存放于mheap数据结构中。src/runtime/mheap.go:mheap定义了heap的数据结构:
lock: 互斥锁
spans: 指向spans区域,用于映射span和page的关系
bitmap:bitmap的起始地址
arena_start: arena区域首地址
arena_used: 当前arena已使用区域的最大地址
central: 每种class对应的两个mcentral
从数据结构可见,mheap管理着全部的内存,事实上Golang就是通过一个mheap类型的全局变量进行内存管理的。mheap内存管理示意图如下:
系统预分配的内存分为spans、bitmap、arean三个区域,通过mheap管理起来。接下来看内存分配过程。
针对待分配对象的大小不同有不同的分配逻辑:
(0, 16B) 且不包含指针的对象: Tiny分配
(0, 16B) 包含指针的对象:正常分配
[16B, 32KB] : 正常分配
(32KB, -) : 大对象分配其中Tiny分配和大对象分配都属于内存管理的优化范畴,这里暂时仅关注一般的分配方法。
以申请size为n的内存为例,分配步骤如下:
Golang内存分配是个相当复杂的过程,其中还掺杂了GC的处理,这里仅仅对其关键数据结构进行了说明,了解其原理而又不至于深陷实现细节。1、Golang程序启动时申请一大块内存并划分成spans、bitmap、arena区域
2、arena区域按页划分成一个个小块。
3、span管理一个或多个页。
4、mcentral管理多个span供线程申请使用
5、mcache作为线程私有资源,资源来源于mcentral。
摘要: 一、前言 go语言类似Java JUC包也提供了一些列用于多线程之间进行同步的措施,比如低级的同步措施有 锁、CAS、原子变量操作类。相比Java来说go提供了独特的基于通道的同步措施。本节我们先来看看go中CAS操作 二、CAS操作 go中的Cas操作与java中类似,都是借用了CPU提供的原子性指令来实现。
go语言类似Java JUC包也提供了一些列用于多线程之间进行同步的措施,比如低级的同步措施有 锁、CAS、原子变量操作类。相比Java来说go提供了独特的基于通道的同步措施。本节我们先来看看go中CAS操作
go中的Cas操作与java中类似,都是借用了CPU提供的原子性指令来实现。CAS操作修改共享变量时候不需要对共享变量加锁,而是通过类似乐观锁的方式进行检查,本质还是不断的占用CPU 资源换取加锁带来的开销(比如上下文切换开销)。下面一个例子使用CAS来实现计数器
go中CAS操作具有原子性,在解决多线程操作共享变量安全上可以有效的减少使用锁所带来的开销,但是这是使用cpu资源做交换的。
我简单列举了并发编程的大纲,需要详细的私信“555”~~
基本设计思路:
类型转换、类型断言、动态派发。iface,eface。
反射对象具有的方法:
编译优化:
内部实现:
实现 Context 接口有以下几个类型(空实现就忽略了):
互斥锁的控制逻辑:
设计思路:
(以上为写被读阻塞,下面是读被写阻塞)
总结,读写锁的设计还是非常巧妙的:
设计思路:
WaitGroup 有三个暴露的函数:
部件:
设计思路:
结构:
Once 只暴露了一个方法:
实现:
三个关键点:
细节:
让多协程任务的开始执行时间可控(按顺序或归一)。(Context 是控制结束时间)
设计思路: 通过一个锁和内置的 notifyList 队列实现,Wait() 会生成票据,并将等待协程信息加入链表中,等待控制协程中发送信号通知一个(Signal())或所有(Boardcast())等待者(内部实现是通过票据通知的)来控制协程解除阻塞。
暴露四个函数:
实现细节:
部件:
包: golang.org/x/sync/errgroup
作用:开启 func() error 函数签名的协程,在同 Group 下协程并发执行过程并收集首次 err 错误。通过 Context 的传入,还可以控制在首次 err 出现时就终止组内各协程。
设计思路:
结构:
暴露的方法:
实现细节:
注意问题:
包: "golang.org/x/sync/semaphore"
作用:排队借资源(如钱,有借有还)的一种场景。此包相当于对底层信号量的一种暴露。
设计思路:有一定数量的资源 Weight,每一个 waiter 携带一个 channel 和要借的数量 n。通过队列排队执行借贷。
结构:
暴露方法:
细节:
部件:
细节:
包: "golang.org/x/sync/singleflight"
作用:防击穿。瞬时的相同请求只调用一次,response 被所有相同请求共享。
设计思路:按请求的 key 分组(一个 *call 是一个组,用 map 映射存储组),每个组只进行一次访问,组内每个协程会获得对应结果的一个拷贝。
结构:
逻辑:
细节:
部件:
如有错误,请批评指正。