重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
使用Python中的自带库math、自带函数pow和自带库cmath来对数字进行开根号运算
创新互联网站建设提供从项目策划、软件开发,软件安全维护、网站优化(SEO)、网站分析、效果评估等整套的建站服务,主营业务为做网站、成都网站设计,App定制开发以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。创新互联深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!
根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。
若a_=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用n√ ̄表示 ,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。
题主你好,
1.使用math库的sqrt函数:
2.使用内建的pow函数:
3.直接使用 数字**0.5
1:二分法
求根号5
a:折半: 5/2=2.5
b:平方校验: 2.5*2.5=6.255,并且得到当前上限2.5
c:再次向下折半:2.5/2=1.25
d:平方校验:1.25*1.25=1.56255,得到当前下限1.25
e:再次折半:2.5-(2.5-1.25)/2=1.875
f:平方校验:1.875*1.875=3.5156255,得到当前下限1.875
每次得到当前值和5进行比较,并且记下下下限和上限,依次迭代,逐渐逼近平方根:
代码如下:
import math
from math import sqrt
def sqrt_binary(num):
x=sqrt(num)
y=num/2.0
low=0.0
up=num*1.0
count=1
while abs(y-x)0.00000001:
print count,y
count+=1
if (y*ynum):
up=y
y=low+(y-low)/2
else:
low=y
y=up-(up-y)/2
return y
print(sqrt_binary(5))
print(sqrt(5))
2:牛顿迭代
仔细思考一下就能发现,我们需要解决的问题可以简单化理解。
从函数意义上理解:我们是要求函数f(x) = x²,使f(x) = num的近似解,即x² - num = 0的近似解。
从几何意义上理解:我们是要求抛物线g(x) = x² - num与x轴交点(g(x) = 0)最接近的点。
我们假设g(x0)=0,即x0是正解,那么我们要做的就是让近似解x不断逼近x0,这是函数导数的定义:
从几何图形上看,因为导数是切线,通过不断迭代,导数与x轴的交点会不断逼近x0。
你好:
是的:
Python开方的话:
power(x,1.0/2) #开根号