重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
用python求一个数的平房可以按照如下的步骤:
成都创新互联公司长期为成百上千家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为揭西企业提供专业的成都网站建设、成都网站设计,揭西网站改版等技术服务。拥有十载丰富建站经验和众多成功案例,为您定制开发。
1、利用input()函数获取一个数字a
a=input("请输入数字:")
2、利用运算符"**"获取变量a的二次幂运算
b=a**2
3、将获取到的结果利用print()函数打印到屏幕上即可。
print("a**2=",b)
运行结果:
1:二分法
求根号5
a:折半: 5/2=2.5
b:平方校验: 2.5*2.5=6.255,并且得到当前上限2.5
c:再次向下折半:2.5/2=1.25
d:平方校验:1.25*1.25=1.56255,得到当前下限1.25
e:再次折半:2.5-(2.5-1.25)/2=1.875
f:平方校验:1.875*1.875=3.5156255,得到当前下限1.875
每次得到当前值和5进行比较,并且记下下下限和上限,依次迭代,逐渐逼近平方根:
代码如下:
import math
from math import sqrt
def sqrt_binary(num):
x=sqrt(num)
y=num/2.0
low=0.0
up=num*1.0
count=1
while abs(y-x)0.00000001:
print count,y
count+=1
if (y*ynum):
up=y
y=low+(y-low)/2
else:
low=y
y=up-(up-y)/2
return y
print(sqrt_binary(5))
print(sqrt(5))
2:牛顿迭代
仔细思考一下就能发现,我们需要解决的问题可以简单化理解。
从函数意义上理解:我们是要求函数f(x) = x²,使f(x) = num的近似解,即x² - num = 0的近似解。
从几何意义上理解:我们是要求抛物线g(x) = x² - num与x轴交点(g(x) = 0)最接近的点。
我们假设g(x0)=0,即x0是正解,那么我们要做的就是让近似解x不断逼近x0,这是函数导数的定义:
从几何图形上看,因为导数是切线,通过不断迭代,导数与x轴的交点会不断逼近x0。
1、python中使用pow函数求n的n方根。首先打开python的编辑器,新建一个python 3的文件:
2、pow函数的用法很简单,只要传入待开方的数,以及要开几次方就可以了。比如演示里是3开3次方:
3、然后需要编译运行,点击菜单栏上run下面的run命令,执行编译运行:
4、在下方的结果中即可看到运算的结果尾27,说明是是正确的。以上就是python中开N次方的操作方法:
def fun(num):
total = 0
for i in range(1, num+1):
total += i**2
return total
n = int(input('请输入n:'))
print('平方和为:', fun(n))