重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

mysql的特征值怎么用 mysql acid特性

mysql---索引优化

索引就是为特定的mysql字段进行一些特定的算法排序,比如二叉树的算法和哈希算法,哈希算法是通过建立特征值,然后根据特征值来快速查找。

创新互联专注于山亭企业网站建设,响应式网站设计,购物商城网站建设。山亭网站建设公司,为山亭等地区提供建站服务。全流程按需设计网站,专业设计,全程项目跟踪,创新互联专业和态度为您提供的服务

1.普通索引:(index)最基本的索引,没有任何限制  目的:加快数据的查询速度

2.唯一索引:(unique)  与"普通索引"类似,不同的就是:索引列的值必须唯一,但允许有空值。

3.主键索引(primary key) 它 是一种特殊的唯一索引,不允许有空值。

4.复合索引:index(a,b,c)  为了更多的提高mysql效率可建立组合索引,遵循”最左前缀“原则。

5.全文索引:fulltext  仅可用于 MyISAM 表,针对较大的数据,生成全文索引很耗时耗空间。

第一类是myisam存储引擎使用的叫做b-tree结构,

第二类是innodb存储引擎使用的叫做聚簇结构(也是一种 b-tree)。 如下图:

注意:

1.myisam不需要回行处理 

2.innodb不需要回行处理,直接可以获取数据,因为innodb的储存引擎是包含了数据和索引文件的,其主键索引包含了数据,(唯一索引及普通索是没有直接包含数据的)

1、索引列不能参与计算

有索引列参与计算的查询条件对索引不友好(甚至无法使用索引),如from_unixtime(create_time) = '2014-05-29'。

原因很简单,如何在节点中查找到对应key?如果线性扫描,则每次都需要重新计算,成本太高;如果二分查找,则需要针对from_unixtime方法确定大小关系。

因此,索引列不能参与计算。上述from_unixtime(create_time) = '2014-05-29'语句应该写成create_time = unix_timestamp('2014-05-29')。

2、最左前缀匹配

如有索引(a, b, c, d),查询条件a = 1 and b = 2 and c 3 and d = 4,则会在每个节点依次命中a、b、c,无法命中d。也就是最左前缀匹配原则。

3、冗余和重复索引

冗余索引是指在相同的列上按照相同的顺序创建的相同类型的索引,应当尽量避免这种索引,发现后立即删除。比如有一个索引(A,B),再创建索引(A)就是冗余索引。冗余索引经常发生在为表添加新索引时,比如有人新建了索引(A,B),但这个索引不是扩展已有的索引(A)

4、避免多个范围条件

    select user.* from user where login_time '2017-04-01' and age between 18 and 30;

比如想查询某个时间段内登录过的用户:它有两个范围条件,login_time列和age列,MySQL可以使用login_time列的索引或者age列的索引,但无法同时使用它们 .

5、覆盖索引 (能扩展就不新建)

如果一个索引包含或者说覆盖所有需要查询的字段的值,那么就没有必要再回表查询,这就称为覆盖索引。覆盖索引是非常有用的工具,可以极大的提高性能,因为查询只需要扫描索引会带来许多好处:

1.索引条目远小于数据行大小,如果只读取索引,极大减少数据访问量2.索引是有按照列值顺序存储的,对于I/O密集型的范围查询要比随机从磁盘读取每一行数据的IO要少的多

6、选择区分度高的列作索引

如,用性别作索引,那么索引仅能将1000w行数据划分为两部分(如500w男,500w女),索引几乎无效。

区分度的公式是count(distinct ) / count(*),表示字段不重复的比例,比例越大区分度越好。唯一键的区分度是1,而一些状态、性别字段可能在大数据面前的区分度趋近于0。

7、删除长期未使用的索引

场景一(覆盖索引 5)

索引应该建在选择性高的字段上(键值唯一的记录数/总记录条数),选择性越高索引的效果越好、价值越大,唯一索引的选择性最高;

组合索引中字段的顺序,选择性越高的字段排在最前面;

where条件中包含两个选择性高的字段时,可以考虑分别创建索引,引擎会同时使用两个索引(在OR条件下,应该说必须分开建索引);

不要重复创建彼此有包含关系的索引,如index1(a,b,c) 、index2(a,b)、index3(a);

组合索引的字段不要过多,如果超过4个字段,一般需要考虑拆分成多个单列索引或更为简单的组合索引;

不要滥用索引。因为过多的索引不仅仅会增加物理存储的开销,对于插入、删除、更新操作也会增加处理上的开销,而且会增加优化器在选择索引时的计算代价。

因此太多的索引与不充分、不正确的索引对性能都是毫无益处的。一言以蔽之,索引的建立必须慎重,对每个索引的必要性都应该经过仔细分析,要有建立的依据。

mysql多表查询合并到一个临时表,怎么再加一列并把各自的表名加上?

insert into temp_table 

select  *  from (

select 'a',id,name form a

union all

select 'b',id,name form b

) c

mysql 内存临时表与磁盘表能关联查询吗

我们仍然使用两个会话,一个会话 run,用于运行主 SQL;另一个会话 ps,用于进行 performance_schema 的观察:

主会话线程号为 29,

将 performance_schema 中的统计量重置,

临时表的表大小限制取决于参数  tmp_table_size 和 max_heap_table_size 中较小者,我们实验中以设置 max_heap_table_size 为例。

我们将会话级别的临时表大小设置为 2M(小于上次实验中临时表使用的空间),执行使用临时表的 SQL:

查看内存的分配记录:

会发现内存分配略大于 2M,我们猜测临时表会比配置略多一点消耗,可以忽略。

查看语句的特征值:

可以看到语句使用了一次需要落磁盘的临时表。

那么这张临时表用了多少的磁盘呢?

我们开启 performance_schema 中 waits 相关的统计项:

重做实验,略过。

再查看 performance_schema 的统计值:

可以看到几个现象:

1. 临时表空间被写入了 7.92MiB 的数据。

2. 这些数据是语句写入后,慢慢逐渐写入的。

来看看这些写入操作的特征,该方法我们在 实验 03 使用过:

可以看到写入的线程是 page_clean_thread,是一个刷脏操作,这样就能理解数据为什么是慢慢写入的。

也可以看到每个 IO 操作的大小是 16K,也就是刷数据页的操作。

结论:

我们可以看到,

1. MySQL 会基本遵守 max_heap_table_size 的设定,在内存不够用时,直接将表转到磁盘上存储。

2. 由于引擎不同(内存中表引擎为 heap,磁盘中表引擎则跟随 internal_tmp_disk_storage_engine 的配置),本次实验写磁盘的数据量和 实验 05 中使用内存的数据量不同。

3. 如果临时表要使用磁盘,表引擎配置为 InnoDB,那么即使临时表在一个时间很短的 SQL 中使用,且使用后即释放,释放后也会刷脏页到磁盘中,消耗部分 IO。

有人问怎么用MySQL求矩阵的特征值

a = [8 1 6; 3 5 7; 4 9 2]

eig(a)

ans = 15.0000 4.8990 -4.8990


当前题目:mysql的特征值怎么用 mysql acid特性
文章转载:http://cqcxhl.com/article/doschii.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP