重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
OpenCV曲线拟合与圆拟合
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名与空间、虚拟主机、营销软件、网站建设、青秀网站维护、网站推广。
使用OpenCV做图像处理与分析的时候,经常会遇到需要进行曲线拟合与圆拟合的场景,很多OpenCV开发者对此却是一筹莫展,其实OpenCV中是有现成的函数来实现圆拟合与直线拟合的,而且还会告诉你拟合的圆的半径是多少,简直是超级方便,另外一个常用到的场景就是曲线拟合,常见的是基于多项式拟合,可以根据设定的多项式幂次生成多项式方程,然后根据方程进行一系列的点生成,形成完整的曲线,这个车道线检测,轮廓曲线拟合等场景下特别有用。下面就通过两个简单的例子来分别学习一下曲线拟合与圆拟合的应用。
一:曲线拟合与应用
基于Numpy包的polyfit函数实现,其支持的三个参数分别是x点集合、y点集合,以及多项式的幂次。得到多项式方程以后,就可以完整拟合曲线,图中有如下四个点:

调用polyfit生成的二阶多项式如下:

拟合结果如下:

使用三阶多项式拟合,调用polyfit生成的多项式方程如下:

生成的拟合曲线如下:

使用polyfit进行曲线拟合时候需要注意的是,多项式的幂次最大是数据点数目N - 1幂次多项式,比如有4个点,最多生成3阶多项式拟合。上述演示的完整代码实现如下:
def circle_fitness_demo():
image = np.zeros((400, 400, 3), dtype=np.uint8)
x = np.array([30, 50, 100, 120])
y = np.array([100, 150, 240, 200])
for i in range(len(x)):
cv.circle(image, (x[i], y[i]), 3, (255, 0, 0), -1, 8, 0)
cv.imwrite("D:/curve.png", image)
poly = np.poly1d(np.polyfit(x, y, 3))
print(poly)
for t in range(30, 250, 1):
y_ = np.int(poly(t))
cv.circle(image, (t, y_), 1, (0, 0, 255), 1, 8, 0)
cv.imshow("fit curve", image)
cv.imwrite("D:/fitcurve.png", image)
二:圆拟合与应用
圆的拟合是基于轮廓发现的结果,对发现的近似圆的轮廓,通过圆拟合可以得到比较好的显示效果,轮廓发现与拟合的API分别为findContours与fitEllipse,
有图像如下:

使用轮廓发现与圆拟合处理结果如下:

红色表示拟合的圆,蓝色是圆的中心位置
上述完整的演示代码如下:
def circle_fitness_demo():
src = cv.imread("D:/javaopencv/c2.png")
cv.imshow("input", src)
src = cv.GaussianBlur(src, (3, 3), 0)
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
cv.imshow("binary", binary)
image, contours, hierachy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
for i in range(len(contours)):
rrt = cv.fitEllipse(contours[i])
cv.ellipse(src, rrt, (0, 0, 255), 2, cv.LINE_AA)
x, y = rrt[0]
cv.circle(src, (np.int(x), np.int(y)), 4, (255, 0, 0), -1, 8, 0)
cv.imshow("fit circle", src)
cv.imwrite("D:/fitcircle.png", src)
吾心信其可行,则移山填海之难,终有成功之日;
吾心信其不可行,则反掌折枝之易,亦无收效之期也
用polyfit(X,Y,1)得到的拟合函数只能得到a,b,但不能得到线性相关系数R^2。如想要得到其线性相关系数,可以用regress(y,X),其使用格式
[b,bint,r,rint,stats]
=
regress(y,X);
b——拟合系数
bint——b的置信区间
r——残差值
rint——r的置信区间
stats——检验统计量,第一个就是相关系数
例如:
x=[。。。];y=[。。。]
X=[x
ones(n,1)];
%x的行数(列数)
[b,bint,r,rint,stats]
=
regress(y,X);
本文实例讲述了Python基于最小二乘法实现曲线拟合。分享给大家供大家参考,具体如下:
这里不手动实现最小二乘,调用scipy库中实现好的相关优化函数。
考虑如下的含有4个参数的函数式:
构造数据
?
123456789101112131415
import numpy as npfrom scipy import optimizeimport matplotlib.pyplot as pltdef logistic4(x, A, B, C, D): return (A-D)/(1+(x/C)**B)+Ddef residuals(p, y, x): A, B, C, D = p return y - logisctic4(x, A, B, C, D)def peval(x, p): A, B, C, D = p return logistic4(x, A, B, C, D)A, B, C, D = .5, 2.5, 8, 7.3x = np.linspace(0, 20, 20)y_true = logistic4(x, A, B, C, D)y_meas = y_true + 0.2 * np.random.randn(len(y_true))
调用工具箱函数,进行优化
?
1234
p0 = [1/2]*4plesq = optimize.leastsq(residuals, p0, args=(y_meas, x)) # leastsq函数的功能其实是根据误差(y_meas-y_true) # 估计模型(也即函数)的参数
绘图
?
12345678
plt.figure(figsize=(6, 4.5))plt.plot(x, peval(x, plesq[0]), x, y_meas, 'o', x, y_true)plt.legend(['Fit', 'Noisy', 'True'], loc='upper left')plt.title('least square for the noisy data (measurements)')for i, (param, true, est) in enumerate(zip('ABCD', [A, B, C, D], plesq[0])): plt.text(11, 2-i*.5, '{} = {:.2f}, est({:.2f}) = {:.2f}'.format(param, true, param, est))plt.savefig('./logisitic.png')plt.show()
希望本文所述对大家Python程序设计有所帮助。
首先分两种情况:
1.交互窗口处执行:这个时候由于python的强制缩进,因此想要结束函数的定义只需要按两下enter即可。
2.在.py文件中编写,结束函数只需要不再缩进即可
调用函数方法相同,把函数名及参数写上就可以了,如果有返回值可以
r=functionA(var1)
附:测试代码(python3运行通过)
# -*- coding:utf-8 -*-
#author:zfxcx
def pt():
print("hello")
pt()
求拟合函数,首先要有因变量和自变量的一组测试或实验数据,根据已知的曲线y=f(x),拟合出Ex和En系数。当用拟合出的函数与实验数据吻合程度愈高,说明拟合得到的Ex和En系数是合理的。吻合程度用相关系数来衡量,即R^2。首先,我们需要打开Python的shell工具,在shell当中新建一个对象member,对member进行赋值。 2、这里我们所创建的列表当中的元素均属于字符串类型,同时我们也可以在列表当中创建数字以及混合类型的元素。 3、先来使用append函数对已经创建的列表添加元素,具体如下图所示,会自动在列表的最后的位置添加一个元素。 4、再来使用extend对来添加列表元素,如果是添加多个元素,需要使用列表的形式。 5、使用insert函数添加列表元素,insert中有两个参数,第一个参数即为插入的位置,第二个参数即为插入的元素。origin拟合中参数值是程序拟合的结果,自定义函数可以设置参数的初值,也可以不设定参数的初值。
一般而言,拟合结果不会因为初值的不同而有太大的偏差,如果偏差很大,说明数据和函数不太匹配,需要对函数进行改正。X0的迭代初始值选择与求解方程,有着密切的关系。不同的初始值得出的系数是完全不一样的。这要通过多次选择和比较,才能得到较为合理的初值。一般的方法,可以通过随机数并根据方程的特性来初选。
很多业务场景中,我们希望通过一个特定的函数来拟合业务数据,以此来预测未来数据的变化趋势。(比如用户的留存变化、付费变化等)
本文主要介绍在 Python 中常用的两种曲线拟合方法:多项式拟合 和 自定义函数拟合。
通过多项式拟合,我们只需要指定想要拟合的多项式的最高项次是多少即可。
运行结果:
对于自定义函数拟合,不仅可以用于直线、二次曲线、三次曲线的拟合,它可以适用于任意形式的曲线的拟合,只要定义好合适的曲线方程即可。
运行结果: