重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
在函数拟合中,如果用p表示函数中需要确定的参数,那么目标就是找到一组p,使得下面函数S的值最小:
成都创新互联主营肥东网站建设的网络公司,主营网站建设方案,成都app开发,肥东h5重庆小程序开发搭建,肥东网站营销推广欢迎肥东等地区企业咨询
这种算法称为最小二乘法拟合。Python的Scipy数值计算库中的optimize模块提供了 leastsq() 函数,可以对数据进行最小二乘拟合计算。
此处利用该函数对一段弧线使用圆方程进行了拟合,并通过Matplotlib模块进行了作图,程序内容如下:
Python的使用中需要导入相应的模块,此处首先用 import 语句
分别导入了numpy, leastsq与pylab模块,其中numpy模块常用用与数组类型的建立,读入等过程。leastsq则为最小二乘法拟合函数。pylab是绘图模块。
接下来我们需要读入需要进行拟合的数据,这里使用了 numpy.loadtxt() 函数:
其参数有:
进行拟合时,首先我们需要定义一个目标函数。对于圆的方程,我们需要圆心坐标(a,b)以及半径r三个参数,方便起见用p来存储:
紧接着就可以进行拟合了, leastsq() 函数需要至少提供拟合的函数名与参数的初始值:
返回的结果为一数组,分别为拟合得到的参数与其误差值等,这里只取拟合参数值。
leastsq() 的参数具体有:
输出选项有:
最后我们可以将原数据与拟合结果一同做成线状图,可采用 pylab.plot() 函数:
pylab.plot() 函数需提供两列数组作为输入,其他参数可调控线条颜色,形状,粗细以及对应名称等性质。视需求而定,此处不做详解。
pylab.legend() 函数可以调控图像标签的位置,有无边框等性质。
pylab.annotate() 函数设置注释,需至少提供注释内容与放置位置坐标的参数。
pylab.show() 函数用于显示图像。
最终结果如下图所示:
用Python作科学计算
numpy.loadtxt
scipy.optimize.leastsq
很多业务场景中,我们希望通过一个特定的函数来拟合业务数据,以此来预测未来数据的变化趋势。(比如用户的留存变化、付费变化等)
本文主要介绍在 Python 中常用的两种曲线拟合方法:多项式拟合 和 自定义函数拟合。
通过多项式拟合,我们只需要指定想要拟合的多项式的最高项次是多少即可。
运行结果:
对于自定义函数拟合,不仅可以用于直线、二次曲线、三次曲线的拟合,它可以适用于任意形式的曲线的拟合,只要定义好合适的曲线方程即可。
运行结果:
任意波形的生成 (geneartion of arbitrary waveform) 在商业,军事等领域都有着重要的应用,诸如空间光通信 (free-space optics communication), 高速信号处理 (high-speed signal processing),雷达 (radar) 等。在任意波形生成后, 如何评估生成的任意波形 成为另外一个重要的话题。
假设有一组实验数据,已知他们之间的函数关系:y=f(x),通过这些信息,需要确定函数中的一些参数项。例如,f 是一个线型函数 f(x)=k*x+b,那么参数 k 和 b 就是需要确定的值。如果这些参数用 p 表示的话,那么就需要找到一组 p 值使得如下公式中的 S 函数最小:
这种算法被称之为 最小二乘拟合 (least-square fitting)。scipy 中的子函数库 optimize 已经提供实现最小二乘拟合算法的函数 leastsq 。下面是 leastsq 函数导入的方式:
scipy.optimize.leastsq 使用方法
在 Python科学计算——Numpy.genfromtxt 一文中,使用 numpy.genfromtxt 对数字示波器采集的三角波数据导入进行了介绍,今天,就以 4GHz三角波 波形的拟合为案例介绍任意波形的拟合方法。
在 Python科学计算——如何构建模型? 一文中,讨论了如何构建三角波模型。在标准三角波波形的基础上添加了 横向,纵向的平移和伸缩特征参数 ,最后添加了 噪声参数 模拟了三角波幅度参差不齐的随机性特征。但在波形拟合时,并不是所有的特征参数都要纳入考量,例如,噪声参数应是 波形生成系统 的固有特征,正因为它的存在使得产生的波形存在瑕疵,因此,在进行波形拟合并评估时,不应将噪声参数纳入考量,最终模型如下:
在调用 scipy.optimize.leastsq 函数时,需要构建误差函数:
有时候,为了使图片有更好的效果,需要对数据进行一些处理:
leastsq 调用方式如下:
合理的设置 p0 可以减少程序运行时间,因此,可以在运行一次程序后,用拟合后的相应数据对 p0 进行修正。
在对波形进行拟合后,调用 pylab 对拟合前后的数据进行可视化:
均方根误差 (root mean square error) 是一个很好的评判标准,它是观测值与真值偏差的平方和观测次数n比值的平方根,在实际测量中,观测次数n总是有限的,真值只能用最可信赖(最佳)值来代替.方根误差对一组测量中的特大或特小误差反映非常敏感,所以,均方根误差能够很好地反映出测量的精密度。
RMSE 用程序实现如下:
拟合效果,模型参数输出:
leastsq 函数适用于任何波形的拟合,下面就来介绍一些常用的其他波形:
在了解了最小二乘法的基本原理之后 python_numpy实用的最小二乘法理解 ,就可以用最小二乘法做曲线拟合了
从结果中可以看出,直线拟合并不能对拟合数据达到很好的效果,下面我们介绍一下曲线拟合。
b=[y1]
[y2]
......
[y100]
解得拟合函数的系数[a,b,c.....d]
CODE:
根据结果可以看到拟合的效果不错。
我们可以通过改变
来调整拟合效果。
如果此处我们把拟合函数改为最高次为x^20的多项式
所得结果如下:
矫正 过拟合 现象
在保持拟合函数改为最高次为x^20的多项式的条件下,增大样本数:
通过结果可以看出,过拟合现象得到了改善。