重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要介绍了Python中计算三角函数之cos()方法的使用简介,是Python入门的基础知识,需要的朋友可以参考下
网站建设哪家好,找创新互联建站!专注于网页设计、网站建设、微信开发、小程序开发、集团企业网站建设等服务项目。为回馈新老客户创新互联还提供了冷水滩免费建站欢迎大家使用!
cos()方法返回x弧度的余弦值。
语法
以下是cos()方法的语法:
cos(x)
注意:此函数是无法直接访问的,所以我们需要导入math模块,然后需要用math的静态对象来调用这个函数。
参数
x
--
这必须是一个数值
返回值
此方法返回-1
到
1之间的数值,它表示角度的余弦值
例子
下面的例子展示cos()方法的使用
?
1
2
3
4
5
6
7
8#!/usr/bin/python
import
math
"cos(3)
:
",
math.cos(3)
"cos(-3)
:
",
math.cos(-3)
"cos(0)
:
",
math.cos(0)
"cos(math.pi)
:
",
math.cos(math.pi)
"cos(2*math.pi)
:
",
math.cos(2*math.pi)
当我们运行上面的程序,它会产生以下结果:
?
1
2
3
4
5cos(3)
:
-0.9899924966
cos(-3)
:
-0.9899924966
cos(0)
:
1.0
cos(math.pi)
:
-1.0
cos(2*math.pi)
:
1.0
在python中,有一个math module,你可以import math,里面有math.sin(), math.cos(), math.asin()和math.acos()四个函数。相信你也知道asin和acos的意思,就是arcsin和arccos。有了这四个函数你就可以求函数值和角度了。但是要注意括号里面填的数值,要用弧度制。
Python的三角函数sin(),输入参数必须是弧度,所以要把角度变换为弧度
import math
# .... 输入度数到 degrees 变量....
# 例子里用 30度计算
degrees=30
radians = degrees * math.pi / 180.0
value = round( math.sin(radians), 4)
print(value)
对于气象绘图来讲,第一步是对数据的处理,通过各类公式,或者统计方法将原始数据处理为目标数据。
按照气象统计课程的内容,我给出了一些常用到的统计方法的对应函数:
在计算气候态,区域平均时均要使用到求均值函数,对应NCL中的dim_average函数,在python中通常使用np.mean()函数
numpy.mean(a, axis, dtype)
假设a为[time,lat,lon]的数据,那么
需要特别注意的是,气象数据中常有缺测,在NCL中,使用求均值函数会自动略过,而在python中,当任意一数与缺测(np.nan)计算的结果均为np.nan,比如求[1,2,3,4,np.nan]的平均值,结果为np.nan
因此,当数据存在缺测数据时,通常使用np.nanmean()函数,用法同上,此时[1,2,3,4,np.nan]的平均值为(1+2+3+4)/4 = 2.5
同样的,求某数组最大最小值时也有np.nanmax(), np.nanmin()函数来补充np.max(), np.min()的不足。
其他很多np的计算函数也可以通过在前边加‘nan’来使用。
另外,
也可以直接将a中缺失值全部填充为0。
np.std(a, axis, dtype)
用法同np.mean()
在NCL中有直接求数据标准化的函数dim_standardize()
其实也就是一行的事,根据需要指定维度即可。
皮尔逊相关系数:
相关可以说是气象科研中最常用的方法之一了,numpy函数中的np.corrcoef(x, y)就可以实现相关计算。但是在这里我推荐scipy.stats中的函数来计算相关系数:
这个函数缺点和有点都很明显,优点是可以直接返回相关系数R及其P值,这避免了我们进一步计算置信度。而缺点则是该函数只支持两个一维数组的计算,也就是说当我们需要计算一个场和一个序列的相关时,我们需要循环来实现。
其中a[time,lat,lon],b[time]
(NCL中为regcoef()函数)
同样推荐Scipy库中的stats.linregress(x,y)函数:
slop: 回归斜率
intercept:回归截距
r_value: 相关系数
p_value: P值
std_err: 估计标准误差
直接可以输出P值,同样省去了做置信度检验的过程,遗憾的是仍需同相关系数一样循环计算。