重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

python内建函数原理 python常用内置函数原理用法

Python 里为什么函数可以返回一个函数内部定义的函数

“在Python中,函数本身也是对象”

创新互联是一家专业提供漳平企业网站建设,专注与网站建设、网站设计成都h5网站建设、小程序制作等业务。10年已为漳平众多企业、政府机构等服务。创新互联专业网络公司优惠进行中。

这一本质。那不妨慢慢来,从最基本的概念开始,讨论一下这个问题:

1. Python中一切皆对象

这恐怕是学习Python最有用的一句话。想必你已经知道Python中的list, tuple, dict等内置数据结构,当你执行:

alist = [1, 2, 3]

时,你就创建了一个列表对象,并且用alist这个变量引用它:

当然你也可以自己定义一个类:

class House(object):

def __init__(self, area, city):

self.area = area

self.city = city

def sell(self, price):

[...] #other code

return price

然后创建一个类的对象:

house = House(200, 'Shanghai')

OK,你立马就在上海有了一套200平米的房子,它有一些属性(area, city),和一些方法(__init__, self):

2. 函数是第一类对象

和list, tuple, dict以及用House创建的对象一样,当你定义一个函数时,函数也是对象:

def func(a, b):

return a+b

在全局域,函数对象被函数名引用着,它接收两个参数a和b,计算这两个参数的和作为返回值。

所谓第一类对象,意思是可以用标识符给对象命名,并且对象可以被当作数据处理,例如赋值、作为参数传递给函数,或者作为返回值return 等

因此,你完全可以用其他变量名引用这个函数对象:

add = func

这样,你就可以像调用func(1, 2)一样,通过新的引用调用函数了:

print func(1, 2)

print add(1, 2) #the same as func(1, 2)

或者将函数对象作为参数,传递给另一个函数:

def caller_func(f):

return f(1, 2)

if __name__ == "__main__":

print caller_func(func)

可以看到,

函数对象func作为参数传递给caller_func函数,传参过程类似于一个赋值操作f=func;

于是func函数对象,被caller_func函数作用域中的局部变量f引用,f实际指向了函数func;cc

当执行return f(1, 2)的时候,相当于执行了return func(1, 2);

因此输出结果为3。

3. 函数对象 vs 函数调用

无论是把函数赋值给新的标识符,还是作为参数传递给新的函数,针对的都是函数对象本身,而不是函数的调用。

用一个更加简单,但从外观上看,更容易产生混淆的例子来说明这个问题。例如定义了下面这个函数:

def func():

return "hello,world"

然后分别执行两次赋值:

ref1 = func #将函数对象赋值给ref1

ref2 = func() #调用函数,将函数的返回值("hello,world"字符串)赋值给ref2

很多初学者会混淆这两种赋值,通过Python内建的type函数,可以查看一下这两次赋值的结果:

In [4]: type(ref1)

Out[4]: function

In [5]: type(ref2)

Out[5]: str

可以看到,ref1引用了函数对象本身,而ref2则引用了函数的返回值。通过内建的callable函数,可以进一步验证ref1是可调用的,而ref2是不可调用的:

In [9]: callable(ref1)

Out[9]: True

In [10]: callable(ref2)

Out[10]: False

传参的效果与之类似。

4. 闭包LEGB法则

所谓闭包,就是将组成函数的语句和这些语句的执行环境打包在一起时,得到的对象

听上去的确有些复杂,还是用一个栗子来帮助理解一下。假设我们在foo.py模块中做了如下定义:

#foo.py

filename = "foo.py"

def call_func(f):

return f() #如前面介绍的,f引用一个函数对象,然后调用它

在另一个func.py模块中,写下了这样的代码:

#func.py

import foo #导入foo.py

filename = "func.py"

def show_filename():

return "filename: %s" % filename

if __name__ == "__main__":

print foo.call_func(show_filename) #注意:实际发生调用的位置,是在foo.call_func函数中

当我们用python func.py命令执行func.py时输出结果为:

chiyu@chiyu-PC:~$ python func.py

filename:func.py

很显然show_filename()函数使用的filename变量的值,是在与它相同环境(func.py模块)中定义的那个。尽管foo.py模块中也定义了同名的filename变量,而且实际调用show_filename的位置也是在foo.py的call_func内部。

而对于嵌套函数,这一机制则会表现的更加明显:闭包将会捕捉内层函数执行所需的整个环境:

#enclosed.py

import foo

def wrapper():

filename = "enclosed.py"

def show_filename():

return "filename: %s" % filename

print foo.call_func(show_filename) #输出:filename: enclosed.py

实际上,每一个函数对象,都有一个指向了该函数定义时所在全局名称空间的__globals__属性:

#show_filename inside wrapper

#show_filename.__globals__

{

'__builtins__': module '__builtin__' (built-in), #内建作用域环境

'__file__': 'enclosed.py',

'wrapper': function wrapper at 0x7f84768b6578, #直接外围环境

'__package__': None,

'__name__': '__main__',

'foo': module 'foo' from '/home/chiyu/foo.pyc', #全局环境

'__doc__': None

}

当代码执行到show_filename中的return "filename: %s" % filename语句时,解析器按照下面的顺序查找filename变量:

Local - 本地函数(show_filename)内部,通过任何方式赋值的,而且没有被global关键字声明为全局变量的filename变量;

Enclosing - 直接外围空间(上层函数wrapper)的本地作用域,查找filename变量(如果有多层嵌套,则由内而外逐层查找,直至最外层的函数);

Global - 全局空间(模块enclosed.py),在模块顶层赋值的filename变量;

Builtin - 内置模块(__builtin__)中预定义的变量名中查找filename变量;

在任何一层先找到了符合要求的filename变量,则不再向更外层查找。如果直到Builtin层仍然没有找到符合要求的变量,则抛出NameError异常。这就是变量名解析的:LEGB法则。

总结:

闭包最重要的使用价值在于:封存函数执行的上下文环境;

闭包在其捕捉的执行环境(def语句块所在上下文)中,也遵循LEGB规则逐层查找,直至找到符合要求的变量,或者抛出异常。

5. 装饰器语法糖(syntax sugar)

那么闭包和装饰器又有什么关系呢?

上文提到闭包的重要特性:封存上下文,这一特性可以巧妙的被用于现有函数的包装,从而为现有函数更加功能。而这就是装饰器。

还是举个例子,代码如下:

#alist = [1, 2, 3, ..., 100] -- 1+2+3+...+100 = 5050

def lazy_sum():

return reduce(lambda x, y: x+y, alist)

我们定义了一个函数lazy_sum,作用是对alist中的所有元素求和后返回。alist假设为1到100的整数列表:

alist = range(1, 101)

但是出于某种原因,我并不想马上返回计算结果,而是在之后的某个地方,通过显示的调用输出结果。于是我用一个wrapper函数对其进行包装:

def wrapper():

alist = range(1, 101)

def lazy_sum():

return reduce(lambda x, y: x+y, alist)

return lazy_sum

lazy_sum = wrapper() #wrapper() 返回的是lazy_sum函数对象

if __name__ == "__main__":

lazy_sum() #5050

这是一个典型的Lazy Evaluation的例子。我们知道,一般情况下,局部变量在函数返回时,就会被垃圾回收器回收,而不能再被使用。但是这里的alist却没有,它随着lazy_sum函数对象的返回被一并返回了(这个说法不准确,实际是包含在了lazy_sum的执行环境中,通过__globals__),从而延长了生命周期。

当在if语句块中调用lazy_sum()的时候,解析器会从上下文中(这里是Enclosing层的wrapper函数的局部作用域中)找到alist列表,计算结果,返回5050。

当你需要动态的给已定义的函数增加功能时,比如:参数检查,类似的原理就变得很有用:

def add(a, b):

return a+b

这是很简单的一个函数:计算a+b的和返回,但我们知道Python是 动态类型+强类型 的语言,你并不能保证用户传入的参数a和b一定是两个整型,他有可能传入了一个整型和一个字符串类型的值:

In [2]: add(1, 2)

Out[2]: 3

In [3]: add(1.2, 3.45)

Out[3]: 4.65

In [4]: add(5, 'hello')

---------------------------------------------------------------------------

TypeError Traceback (most recent call last)

/home/chiyu/ipython-input-4-f2f9e8aa5eae in module()

---- 1 add(5, 'hello')

/home/chiyu/ipython-input-1-02b3d3d6caec in add(a, b)

1 def add(a, b):

---- 2 return a+b

TypeError: unsupported operand type(s) for +: 'int' and 'str'

于是,解析器无情的抛出了一个TypeError异常。

动态类型:在运行期间确定变量的类型,python确定一个变量的类型是在你第一次给他赋值的时候;

强类型:有强制的类型定义,你有一个整数,除非显示的类型转换,否则绝不能将它当作一个字符串(例如直接尝试将一个整型和一个字符串做+运算);

因此,为了更加优雅的使用add函数,我们需要在执行+运算前,对a和b进行参数检查。这时候装饰器就显得非常有用:

import logging

logging.basicConfig(level = logging.INFO)

def add(a, b):

return a + b

def checkParams(fn):

def wrapper(a, b):

if isinstance(a, (int, float)) and isinstance(b, (int, float)): #检查参数a和b是否都为整型或浮点型

return fn(a, b) #是则调用fn(a, b)返回计算结果

#否则通过logging记录错误信息,并友好退出

logging.warning("variable 'a' and 'b' cannot be added")

return

return wrapper #fn引用add,被封存在闭包的执行环境中返回

if __name__ == "__main__":

#将add函数对象传入,fn指向add

#等号左侧的add,指向checkParams的返回值wrapper

add = checkParams(add)

add(3, 'hello') #经过类型检查,不会计算结果,而是记录日志并退出

注意checkParams函数:

首先看参数fn,当我们调用checkParams(add)的时候,它将成为函数对象add的一个本地(Local)引用;

在checkParams内部,我们定义了一个wrapper函数,添加了参数类型检查的功能,然后调用了fn(a, b),根据LEGB法则,解释器将搜索几个作用域,并最终在(Enclosing层)checkParams函数的本地作用域中找到fn;

注意最后的return wrapper,这将创建一个闭包,fn变量(add函数对象的一个引用)将会封存在闭包的执行环境中,不会随着checkParams的返回而被回收;

当调用add = checkParams(add)时,add指向了新的wrapper对象,它添加了参数检查和记录日志的功能,同时又能够通过封存的fn,继续调用原始的add进行+运算。

因此调用add(3, 'hello')将不会返回计算结果,而是打印出日志:

chiyu@chiyu-PC:~$ python func.py

WARNING:root:variable 'a' and 'b' cannot be added

有人觉得add = checkParams(add)这样的写法未免太过麻烦,于是python提供了一种更优雅的写法,被称为语法糖:

@checkParams

def add(a, b):

return a + b

这只是一种写法上的优化,解释器仍然会将它转化为add = checkParams(add)来执行。

6. 回归问题

def addspam(fn):

def new(*args):

print "spam,spam,spam"

return fn(*args)

return new

@addspam

def useful(a,b):

print a**2+b**2

首先看第二段代码:

@addspam装饰器,相当于执行了useful = addspam(useful)。在这里题主有一个理解误区:传递给addspam的参数,是useful这个函数对象本身,而不是它的一个调用结果;

再回到addspam函数体:

return new 返回一个闭包,fn被封存在闭包的执行环境中,不会随着addspam函数的返回被回收;

而fn此时是useful的一个引用,当执行return fn(*args)时,实际相当于执行了return useful(*args);

最后附上一张代码执行过程中的引用关系图,希望能帮助你理解:

Python基础之常见内建函数

map() 函数接受两个参数,一个是函数,一个是可迭代对象(Iterable), map 将传入的函数依次作用到可迭代对象的每一个元素,并把结果作为迭代器(Iterator)返回。

举例说明,有一个函数 f(x)=x^2 ,要把这个函数作用到一个list [1,2,3,4,5,6,7,8,9] 上:

运用简单的循环可以实现:

运用高阶函数 map() :

结果 r 是一个迭代器,迭代器是惰性序列,通过 list() 函数让它把整个序列都计算出来并返回一个 list 。

如果要把这个list所有数字转为字符串利用 map() 就简单了:

小练习:利用 map() 函数,把用户输入的不规范的英文名字变为首字母大写其他小写的规范名字。输入 ['adam', 'LISA', 'barT'] ,输出 ['Adam', 'Lisa', 'Bart']

reduce() 函数也是接受两个参数,一个是函数,一个是可迭代对象, reduce 将传入的函数作用到可迭代对象的每个元素的结果做累计计算。然后将最终结果返回。

效果就是: reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)

举例说明,将序列 [1,2,3,4,5] 变换成整数 12345 :

小练习:编写一个 prod() 函数,可以接受一个 list 并利用 reduce 求积:

map() 和 reduce() 综合练习:编写 str2float 函数,把字符串 '123.456' 转换成浮点型 123.456

filter() 函数用于过滤序列, filter() 也接受一个函数和一个序列, filter() 把传入的函数依次作用于每个元素,然后根据返回值是 True 还是 False 决定保留还是丢弃该元素。

举例说明,删除list中的偶数:

小练习:用 filter() 求素数

定义一个筛选函数:

定义一个生成器不断返回下一个素数:

打印100以内素数:

python内置的 sorted() 函数可以对list进行排序:

sorted() 函数也是一个高阶函数,还可以接受一个 key 函数来实现自定义排序:

key 指定的函数将作用于list的每一个元素上,并根据 key 函数返回的结果进行排序.

默认情况下,对字符串排序,是按照ASCII的大小比较的,由于'Z' 'a',结果,大写字母Z会排在小写字母a的前面。如果想忽略大小写可都转换成小写来比较:

要进行反向排序,不必改动key函数,可以传入第三个参数 reverse=True :

小练习:假设我们用一组tuple表示学生名字和成绩: L = [('Bob', 75), ('Adam', 92), ('Bart', 66), ('Lisa', 88)] 。用sorted()对上述列表分别按c成绩从高到低排序:

运用匿名函数更简洁:

python、什么是内建函数

python内建函数总结

1. abs(x)

abs()函数返回数字(可为普通型、长整型或浮点型)的绝对值。如果给出复数,返回值就是该复数的模。例如:

print abs(-2,4)

2.4

print abs(4+2j)

4.472135955

2. apply(function,args[,keywords])

apply()函数将args参数应用到function上。function参数必须是可调用对象(函数、方法或其他可调用对象)。args参数必须以

序列形式给出。列表在应用之前被转换为元组。function对象在被调用时,将args列表的内容分别作为独立的参数看待。例如:

apply(add,(1,3,4))

等价于

add(1,3,4)

在以列表或元组定义了一列参数,且需要将此列表参数分别作为个个独立参数使用的情况下,必须使用apply()函数。在要把变长参数列应用到已函数上时,apply()函数非常有用。

可选项keywords参数应是个字典,字典的关键字是字符串。这些字符串在apply()函数的参数列末尾处给出,它们将被用作关键字参数。

3. buffer(object[,offset[,size]])

如果object对象支持缓存调用接口buffer()函数就为object对象创建一个新缓存。这样的对象包括字符串、数组和缓存。该新缓存通过使用从

offset参数值开始知道该对象末尾的存储片段或从offset参数值开始直到size参数给出的尺寸为长度的存储片段来引用object对象。如果没

给出任何选项参数,缓存区域就覆盖整个序列,最终得到的缓存对象是object对象数据的只读拷贝。

缓存对象用于给某个对象类型创建一个更友好的接口。比如,字符串对象类型通用缓存对象而变得可用,允许逐个字节地访问字符串中的信息。

4. callable(object)

callable()函数在object对象是可调用对象的情况下,返回真(true);否则假(false),可调用对象包括函数、方法、代码对象、类(在调用时返回新的实例)和已经定义‘调用’方法的类实例

5. chr(i)

chr()函数返回与ASCII码i相匹配的一个单一字符串,如下例所示:

print chr(72)+chr(101)+chr(108)+chr(111)

hello

chr()函数是ord()函数的反函数,其中ord()函数将字符串转换回ASCII整数码,参数i的取值应在0~255范围内。如果参数i的取值在此范围之外,将引发ValueError异常。

6. cmp(x,y)

cmp()函数比较x和y这两个对象,且根据比较结果返回一个整数。如果xy,则返回正数。请注意,此函数特别用来比较数值大小,而不是任何引用关系,因而有下面的结果:

a=99

b=int('99')

cmp(a,b)

7. coerce(x,y)

coerce()函数返回一个元组,该元组由两个数值型参数组成。此函数将两个数值型参数转换为同一类型数字,其转换规则与算术转换规则一样。一下是两个例子:

a=1

b=1.2

coerce(a,b)

(1.0,1.2)

a=1+2j

b=4.3e10

coerce(a,b)

((1+2j),(43000000000+0j))

8 compile(string,filename,kind)

compile()函数将string编译为代码对象,编译生成的代码对象接下来被exec语句执行,接着能利用eval()函数对其进行求值。

filename参数应是代码从其中读出的文件名。如果内部生成文件名,filename参数值应是相应的标识符。kind参数指定string参数中所含代码的类别。

举例如下:

a=compile(‘print “Hello World”’,’’,’single’)

exec(a)

Hello World

eval(a)

Hello World

9. complex(real,[image])

Complex()函数返回一个复数,其实部为real参数值。如果给出image参数的值,则虚部就为image;如果默认image参数,则虚部为0j。

10. delattr(object,name)

delattr()函数在object对象许可时,删除object对象的name属性,此函数等价于如下语句:

del object.attr

而delattr()函数允许利用编程方法定义来定义object和name参数,并不是在代码中显示指定。

python如何导入函数

python的内建函数即是python自带的函数,这种函数不需要定义,并且不同的内建函数具有不同的功能,可以直接使用。

以下是部分内建函数用法及说明

1、abs(),返回数字的绝对值。

2、all(),如果集合中所有元素是true或集合为空集合,返回True。

3、any(),如果集合中有一项元素是true,返回True;空集合为False

4、ascii(), 返回一个表示对象的字符串。

5、bin(),将整数转换为前缀为“0b”的二进制字符串。

6、bool(),返回一个布尔值,即True或者之一False。

7、bytearray(),返回一个新的字节数组。

8、callable(对象)判断对象参数是否可被调用(可被调用指的是对象能否使用()括号的方法调用)

9、chr(),返回表示Unicode代码点为整数i的字符的字符串。与ord()函数相反。

推荐学习《python教程》

10、classmethod,将方法转换为类方法。

11、compile,将源代码编译为代码或AST对象。代码对象可以由exec()或执行eval()。 source可以是普通字符串,字节字符串或AST对象。

12、dic(),创建一个字典

13、divmod(a,b),将两个数作为参数,并在使用整数除法时返回由商和余数组成的一对数

14、enumerate(iterable,start = 0)

enumerate是枚举、列举的意思

对于一个可迭代的(iterable)/可遍历的对象(如列表、字符串),enumerate将其组成一个索引序列,利用它可以同时获得索引和值

enumerate多用于在for循环中得到计数

15、eval,将一个字符串变为字典

16、exec(object [, globals[, locals]])exec语句用来执行储存在字符串或文件中的Python语句

17、filter(功能,可迭代)

filter函数用于过滤序列

filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。


当前题目:python内建函数原理 python常用内置函数原理用法
文章转载:http://cqcxhl.com/article/dosjhid.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP