重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
.example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px} 排序算法是《数据结构与算法》中最基本的算法之一。排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。以下是快速排序算法:
创新互联建站是一家集网站建设,浈江企业网站建设,浈江品牌网站建设,网站定制,浈江网站建设报价,网络营销,网络优化,浈江网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。
快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。
快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。
快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!它是处理大数据最快的排序算法之一了。虽然 Worst Case 的时间复杂度达到了 O(n?),但是人家就是优秀,在大多数情况下都比平均时间复杂度为 O(n logn) 的排序算法表现要更好,可是这是为什么呢,我也不知道。好在我的强迫症又犯了,查了 N 多资料终于在《算法艺术与信息学竞赛》上找到了满意的答案:
快速排序的最坏运行情况是 O(n?),比如说顺序数列的快排。但它的平摊期望时间是 O(nlogn),且 O(nlogn) 记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。
1. 算法步骤
从数列中挑出一个元素,称为 "基准"(pivot);
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;
2. 动图演示
代码实现 JavaScript 实例 function quickSort ( arr , left , right ) {
var len = arr. length ,
partitionIndex ,
left = typeof left != 'number' ? 0 : left ,
right = typeof right != 'number' ? len - 1 : right ;
if ( left
排序的方法有:插入排序(直接插入排序、希尔排序),交换排序(冒泡排序、快速排序),选择排序(直接选择排序、堆排序),归并排序,分配排序(箱排序、基数排序)
快速排序的伪代码。
/
/使用快速排序方法对a[
:n-
1
]排序
从a[
:n-
1
]中选择一个元素作为m
i
d
d
l
e,该元素为支点
把余下的元素分割为两段left
和r
i
g
h
t,使得l
e
f
t中的元素都小于等于支点,而right
中的元素都大于等于支点
递归地使用快速排序方法对left
进行排序
递归地使用快速排序方法对right
进行排序
所得结果为l
e
f
t
+
m
i
d
d
l
e
+
r
i
g
h
t
java常见的排序分为:
1 插入类排序
主要就是对于一个已经有序的序列中,插入一个新的记录。它包括:直接插入排序,折半插入排序和希尔排序
2 交换类排序
这类排序的核心就是每次比较都要“交换”,在每一趟排序都会两两发生一系列的“交换”排序,但是每一趟排序都会让一个记录排序到它的最终位置上。它包括:起泡排序,快速排序
3 选择类排序
每一趟排序都从一系列数据中选择一个最大或最小的记录,将它放置到第一个或最后一个为位置交换,只有在选择后才交换,比起交换类排序,减少了交换记录的时间。属于它的排序:简单选择排序,堆排序
4 归并类排序
将两个或两个以上的有序序列合并成一个新的序列
5 基数排序
主要基于多个关键字排序的。
下面针对上面所述的算法,讲解一些常用的java代码写的算法
二 插入类排序之直接插入排序
直接插入排序,一般对于已经有序的队列排序效果好。
基本思想:每趟将一个待排序的关键字按照大小插入到已经排序好的位置上。
算法思路,从后往前先找到要插入的位置,如果小于则就交换,将元素向后移动,将要插入数据插入该位置即可。时间复杂度为O(n2),空间复杂度为O(1)
package sort.algorithm;
public class DirectInsertSort {
public static void main(String[] args) {
// TODO Auto-generated method stub
int data[] = { 2, 6, 10, 3, 9, 80, 1, 16, 27, 20 };
int temp, j;
for (int i = 1; i data.length; i++) {
temp = data[i];
j = i - 1;
// 每次比较都是对于已经有序的
while (j = 0 data[j] temp) {
data[j + 1] = data[j];
j--;
}
data[j + 1] = temp;
}
// 输出排序好的数据
for (int k = 0; k data.length; k++) {
System.out.print(data[k] + " ");
}
}
}
三 插入类排序之折半插入排序(二分法排序)
条件:在一个已经有序的队列中,插入一个新的元素
折半插入排序记录的比较次数与初始序列无关
思想:折半插入就是首先将队列中取最小位置low和最大位置high,然后算出中间位置mid
将中间位置mid与待插入的数据data进行比较,
如果mid大于data,则就表示插入的数据在mid的左边,high=mid-1;
如果mid小于data,则就表示插入的数据在mid的右边,low=mid+1
最后整体进行右移操作。
时间复杂度O(n2),空间复杂度O(1)
package sort.algorithm;
//折半插入排序
public class HalfInsertSort {
public static void main(String[] args) {
int data[] = { 2, 6, 10, 3, 9, 80, 1, 16, 27, 20 };
// 存放临时要插入的元素数据
int temp;
int low, mid, high;
for (int i = 1; i data.length; i++) {
temp = data[i];
// 在待插入排序的序号之前进行折半插入
low = 0;
high = i - 1;
while (low = high) {
mid = (low + high) / 2;
if (temp data[mid])
high = mid - 1;
else
// low=high的时候也就是找到了要插入的位置,
// 此时进入循环中,将low加1,则就是要插入的位置了
low = mid + 1;
}
// 找到了要插入的位置,从该位置一直到插入数据的位置之间数据向后移动
for (int j = i; j = low + 1; j--)
data[j] = data[j - 1];
// low已经代表了要插入的位置了
data[low] = temp;
}
for (int k = 0; k data.length; k++) {
System.out.print(data[k] + " ");
}
}
}
四 插入类排序之希尔排序
希尔排序,也叫缩小增量排序,目的就是尽可能的减少交换次数,每一个组内最后都是有序的。
将待续按照某一种规则分为几个子序列,不断缩小规则,最后用一个直接插入排序合成
空间复杂度为O(1),时间复杂度为O(nlog2n)
算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。
package sort.algorithm;
public class ShellSort {
public static void main(String[] args) {
int a[] = { 1, 54, 6, 3, 78, 34, 12, 45, 56, 100 };
double d1 = a.length;
int temp = 0;
while (true)
{
//利用这个在将组内倍数减小
//这里依次为5,3,2,1
d1 = Math.ceil(d1 / 2);
//d为增量每个分组之间索引的增量
int d = (int) d1;
//每个分组内部排序
for (int x = 0; x d; x++)
{
//组内利用直接插入排序
for (int i = x + d; i a.length; i += d) {
int j = i - d;
temp = a[i];
for (; j = 0 temp a[j]; j -= d) {
a[j + d] = a[j];
}
a[j + d] = temp;
}
}
if (d == 1)
break;
}
for (int i = 0; i a.length; i++)
System.out.print(a[i]+" ");
}
}
五 交换类排序之冒泡排序
交换类排序核心就是每次比较都要进行交换
冒泡排序:是一种交换排序
每一趟比较相邻的元素,较若大小不同则就会发生交换,每一趟排序都能将一个元素放到它最终的位置!每一趟就进行比较。
时间复杂度O(n2),空间复杂度O(1)
package sort.algorithm;
//冒泡排序:是一种交换排序
public class BubbleSort {
// 按照递增顺序排序
public static void main(String[] args) {
// TODO Auto-generated method stub
int data[] = { 2, 6, 10, 3, 9, 80, 1, 16, 27, 20, 13, 100, 37, 16 };
int temp = 0;
// 排序的比较趟数,每一趟都会将剩余最大数放在最后面
for (int i = 0; i data.length - 1; i++) {
// 每一趟从开始进行比较,将该元素与其余的元素进行比较
for (int j = 0; j data.length - 1; j++) {
if (data[j] data[j + 1]) {
temp = data[j];
data[j] = data[j + 1];
data[j + 1] = temp;
}
}
}
for (int i = 0; i data.length; i++)
System.out.print(data[i] + " ");
}
}
下面给你介绍四种常用排序算法:
1、冒泡排序
特点:效率低,实现简单
思想(从小到大排):每一趟将待排序序列中最大元素移到最后,剩下的为新的待排序序列,重复上述步骤直到排完所有元素。这只是冒泡排序的一种,当然也可以从后往前排。
2、选择排序
特点:效率低,容易实现。
思想:每一趟从待排序序列选择一个最小的元素放到已排好序序列的末尾,剩下的位待排序序列,重复上述步骤直到完成排序。
3、插入排序
特点:效率低,容易实现。
思想:将数组分为两部分,将后部分元素逐一与前部分元素比较,如果当前元素array[i]小,就替换。找到合理位置插入array[i]
4、快速排序
特点:高效,时间复杂度为nlogn。
采用分治法的思想:首先设置一个轴值pivot,然后以这个轴值为划分基准将待排序序列分成比pivot大和比pivot小的两部分,接下来对划分完的子序列进行快排直到子序列为一个元素为止。
/**
* 冒泡排序
* 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
* 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
* 针对所有的元素重复以上的步骤,除了最后一个。
* 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
* @param numbers 需要排序的整型数组
*/
public static void bubbleSort(int[] numbers)
{
int temp = 0;
int size = numbers.length;
for(int i = 0 ; i size-1; i ++)
{
for(int j = 0 ;j size-1-i ; j++)
{
if(numbers[j] numbers[j+1]) //交换两数位置
{
temp = numbers[j];
numbers[j] = numbers[j+1];
numbers[j+1] = temp;
}
}
}
}
快速排序的基本思想:
通过一趟排序将待排序记录分割成独立的两部分,其中一部分记录的关键字均比另一部分关键字小,则分别对这两部分继续进行排序,直到整个序列有序。
/**
* 查找出中轴(默认是最低位low)的在numbers数组排序后所在位置
*
* @param numbers 带查找数组
* @param low 开始位置
* @param high 结束位置
* @return 中轴所在位置
*/
public static int getMiddle(int[] numbers, int low,int high)
{
int temp = numbers[low]; //数组的第一个作为中轴
while(low high)
{
while(low high numbers[high] temp)
{
high--;
}
numbers[low] = numbers[high];//比中轴小的记录移到低端
while(low high numbers[low] temp)
{
low++;
}
numbers[high] = numbers[low] ; //比中轴大的记录移到高端
}
numbers[low] = temp ; //中轴记录到尾
return low ; // 返回中轴的位置
}
递归形式的分治排序算法:
/**
*
* @param numbers 带排序数组
* @param low 开始位置
* @param high 结束位置
*/
public static void quickSort(int[] numbers,int low,int high)
{
if(low high)
{
int middle = getMiddle(numbers,low,high); //将numbers数组进行一分为二
quickSort(numbers, low, middle-1); //对低字段表进行递归排序
quickSort(numbers, middle+1, high); //对高字段表进行递归排序
}
}
冒泡排序是比较经典的排序算法。代码如下:
for(int i=1;iarr.length;i++){
for(int j=1;jarr.length-i;j++){
//交换位置
}
拓展资料:
原理:比较两个相邻的元素,将值大的元素交换至右端。
思路:依次比较相邻的两个数,将小数放在前面,大数放在后面。即在第一趟:首先比较第1个和第2个数,将小数放前,大数放后。然后比较第2个数和第3个数,将小数放前,大数放后,如此继续,直至比较最后两个数,将小数放前,大数放后。重复第一趟步骤,直至全部排序完成。
第一趟比较完成后,最后一个数一定是数组中最大的一个数,所以第二趟比较的时候最后一个数不参与比较;
第二趟比较完成后,倒数第二个数也一定是数组中第二大的数,所以第三趟比较的时候最后两个数不参与比较;
依次类推,每一趟比较次数-1;
??
举例说明:要排序数组:int[] arr={6,3,8,2,9,1};
for(int i=1;iarr.length;i++){
for(int j=1;jarr.length-i;j++){
//交换位置
}
参考资料:冒泡排序原理