重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

nosql入门进阶,nosql的三大基石

大数据学习路线是什么?

主要分为 7 个阶段:入门知识 → Java 基础 → Scala 基础 → Hadoop 技术模块 → Hadoop 项目实战 → Spark 技术模块 → 大数据项目实战。

10多年的河曲网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。成都全网营销的优势是能够根据用户设备显示端的尺寸不同,自动调整河曲建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联公司从事“河曲网站设计”,“河曲网站推广”以来,每个客户项目都认真落实执行。

阶段一:学习入门知识

这一部分主要针对的是新手,在学习之前需要先掌握基本的数据库知识。MySQL 是一个 DBMS(数据库管理系统),是最流行的关系型数据库管理系统(关系数据库,是建立在关系数据库模型基础上的数据库,借助于集合代数等概念和方法来处理数据库中的数据)。

MongoDB 是 IT 行业非常流行的一种非关系型数据库(NoSQL),其灵活的数据存储方式备受当前 IT 从业人员的青睐。

而 Redis 是一个开源、支持网络、基于内存、键值对存储数据库。两者都非常有必要了解。

1、Linux 基础入门(新版)

2、Vim编辑器

3、Git 实战教程

4、MySQL 基础课程

5、MongoDB 基础教程

6、Redis基础教程

阶段二:Java基础

Java 是目前使用最为广泛的编程语言,它具有的众多特性,特别适合作为大数据应用的开发语言。

Java 语言具有功能强大和简单易用两个特征,跨平台应用能力比 C、C++ 更易用,更容易上手。同时还具有简单性、面向对象、分布式、健壮性、安全性、平台独立与可移植性、多线程、动态性等特点。最重要的一点是 Hadoop 是用 Java 编写的。

1、Java编程语言(新版)

2、Java进阶之设计模式

3、J2SE核心开发实战

4、JDK 核心 API

5、JDBC 入门教程

6、Java 8 新特性指南

阶段三:Scala基础

Scala 是一种多范式的编程语言,其设计的初衷是要集成面向对象编程和函数式编程的各种特性。由于 Scala 运行于 Java 平台(Java 虚拟机),并兼容现有的Java 程序,所以 Scala 可以和大数据相关的基于 JVM 的系统很好的集成。

1、Scala 开发教程

2、Scala 专题教程 - Case Class和模式匹配

3、Scala 专题教程 - 隐式变换和隐式参数

4、Scala 专题教程 - 抽象成员

5、Scala 专题教程 - Extractor

6、Scala 开发二十四点游戏

阶段四:Hadoop技术模块

Hadoop 是一款支持数据密集型分布式应用并以 Apache 2.0 许可协议发布的开源软件框架,它能搭建大型数据仓库,PB 级别数据的存储、处理、分析、统计等业务。编程语言你可以选,但 Hadoop 一定是大数据必学内容。

1、Hadoop入门进阶课程

2、Hadoop部署及管理

3、HBASE 教程

4、Hadoop 分布式文件系统--导入和导出数据

5、使用 Flume 收集数据

阶段五:Hadoop项目实战

当然,学完理论就要进行动手实战了,Hadoop 项目实战可以帮助加深对内容的理解,并锻炼动手能力。

1、Hadoop 图处理--《hadoop应用框架》

阶段六:Spark技术模块

Spark 和 Hadoop 都是大数据框架。Hadoop 提供了 Spark 所没有的功能特性,比如分布式文件系统,而 Spark 为需要它的那些数据集提供了实时内存处理。所以学习 Spark 也非常必要。

1、Spark

2、x 快速入门教程

2、Spark 大数据动手实验

3、Spark 基础之 GraphX 图计算框架学习

4、Spark 基础之 DataFrame 基本概念学习

5、Spark 基础之 DataFrame 高阶应用技巧

6、Spark 基础之 Streaming 快速上手

7、Spark 基础之 SQL 快速上手

8、Spark 基础之使用机器学习库 MLlib

9、Spark 基础之 SparkR 快速上手

10、流式实时日志分析系统--《Spark 最佳实践》

11、使用 Spark 和 D3.js 分析航班大数据

阶段七:大数据项目实战

最后阶段提供了大数据实战项目,这是对常用技能的系统运用,例如使用常用的机器学习进行建模、分析和运算,这是成为大数据工程师过程中的重要一步。

1、Ebay 在线拍卖数据分析

2、流式实时日志分析系统--《Spark 最佳实践》

3、大数据带你挖掘打车的秘籍

4、Twitter数据情感分析

5、使用 Spark 进行流量日志分析

6、Spark流式计算电商商品关注度

7、Spark的模式挖掘-FPGrowth算法

扩展资料:

大数据技术的具体内容:

分布式存储计算架构(强烈推荐:Hadoop)

分布式程序设计(包含:Apache Pig或者Hive)

分布式文件系统(比如:Google GFS)

多种存储模型,主要包含文档,图,键值,时间序列这几种存储模型(比如:BigTable,Apollo, DynamoDB等)

数据收集架构(比如:Kinesis,Kafla)

集成开发环境(比如:R-Studio)

程序开发辅助工具(比如:大量的第三方开发辅助工具)

调度协调架构工具(比如:Apache Aurora)

机器学习(常用的有Apache Mahout 或 H2O)

托管管理(比如:Apache Hadoop Benchmarking)

安全管理(常用的有Gateway)

大数据系统部署(可以看下Apache Ambari)

搜索引擎架构( 学习或者企业都建议使用Lucene搜索引擎)

多种数据库的演变(MySQL/Memcached)

商业智能(大力推荐:Jaspersoft )

数据可视化(这个工具就很多了,可以根据实际需要来选择)

大数据处理算法(10大经典算法)

想学习数据分析,有哪些书籍或资料参考学习

入门数据分析类

师父领进门,修行在个人。下面这两本书是入门数据分析必看的书籍,也是检验自己是否真的喜欢数据分析。

从0到1:《深入浅出数据分析》

为什么是它?借用一位读者的评价“我家的猫都喜欢这本书!”

01 内容简介

以类似“章回小说”的活泼形式,生动地向读者展现优秀的数据分析人员应知应会的技术;正文以后,意犹未尽地以三篇附录介绍数据分析十大要务、R工具及ToolPak工具,在充分展现目标知识以外,为读者搭建了走向深入研究的桥梁。

02 推荐理由

书名已经很好地表现出了这本书的优点——“深入浅出”。忘记烦恼,这本书与现实世界紧密互动,让你不再只有枯燥的理论,并且将知识图形化,复杂的概念简单化。

经典小黄书:《谁说菜鸟不会数据分析》

是本很好的书,但看过之后,这本书就真一文不值了。

01 内容简介

很多人看到数据分析就望而却步,担心门槛高,无法迈入数据分析的门槛。《谁说菜鸟不会数据分析》努力将数据分析写成像小说一样通俗易懂,使读者可以在无形之中学会数据分析,按照数据分析工作的完整流程来讲解。

02 推荐理由

数据分析的入门极品,但真的很入门,优缺兼有。对于入门理解来说是绝佳选择,对之后的修炼还是不够的。建议之前全都是自己瞎摸瞎撞搞数据分析的同学进行阅读,颇有醍醐灌顶之感。

分析工具类

与数据分析相关的工具非常之多,我们常用的有Excel、PPT、SQL等。如果您想精通他们,直接在哔哩哔哩搜索聚数云海,即可找到相关优质课程。

1.Excel

大家常说的Excel,但是不要以为你很会Excel!Excel是所有职场人必备的办公软件。Excel功能非常强大,在数据量不是很大的情况下,基本上都能用Excel实现数据分析。推荐如下书籍:

《Excel高效办公数据处理与分析》

01 内容简介

根据现代企业决策和管理工作的主要特点,从实际应用出发,介绍了Excel强大的数据处理与分析功能在企业决策和管理工作中的具体应用。

02 推荐理由

本书同时提供了大量需要你做的实例,学而不练是不存在的!

《别怕,Excel函数其实很简单》

01 内容简介

《别怕,Excel 函数其实很简单》用浅显易懂的图文、生动形象的比喻以及大量实际工作中的经典案例,介绍了Excel最常用的一部分函数的计算原理和应用技巧,还介绍了数据的科学管理方法,以避免从数据源头就产生问题。

02 推荐理由

适合希望提高办公效率的职场人士,特别是经常需要处理分析大量数据并制作统计报表的相关人员,以及相关专业的高校师生阅读,小白需谨慎!

2. SQL

SQL是数据分析的基础,是想要学会数据分析能力的必备技能。那这里我只给大家介绍三本书,第一本书零基础入门,第二是进阶,第三本是SQL中的字典,话不多说,我们直接上架。

《SQL基础教程》

01 推荐理由

介绍了关系数据库以及用来操作关系数据库的SQL语言的使用方法。书中通过丰富的图示、大量示例程序和详实的操作步骤说明,让读者循序渐进地掌握SQL的基础知识和使用技巧,切实提高编程能力。每章结尾设置有练习题,帮助读者检验对各章内容的理解程度。另外,本书还将重要知识点总结为“法则”,方便读者随时查阅。

本书107张图表+209段代码+88个法则,是零基础进阶人士必备!

SQL进阶:《SQL进阶教程》

01 推荐理由

本书是为志在向中级进阶的数据库工程师编写的一本SQL技能提升指南。全书可分为两部分,第一部分介绍了SQL语言不同寻常的使用技巧,带领读者从SQL常见技术,去探索新发现。旨在帮助读者提升编程水平;第二部分着重介绍关系数据库的发展史,把实践与理论结合起来,旨在帮助读者加深对关系数据库和SQL语言的理解。

本书不适合小白!适合具有半年以上SQL使用经验、已掌握SQL基础知识和技能、希望提升自己编程水平的读者阅读。

SQL辅导书籍

01 推荐理由

本书是麻省理工学院、伊利诺伊大学等众多大学的参考教材,由浅入深地讲解了SQL的内容,实例丰富,便于查阅。本书没有过多阐述数据库基础理论,而是专门针对一线软件开发人员,直接从SQL SELECT开始,讲述实际工作环境中最常用和最必需的SQL知识,实用性极强。

有一定SQL基础的人士可以将它当做一本字典使用,遇到问题可以查找相应内用。

3.Python

“人生苦短,我用Python”。Python编程语言是最容易学习,并且功能强大的语言。但是很多人声称自己精通Python,自己却写不出Pythonic的代码,对很多常用的包不是很了解。万丈高楼平地起,咱们先从Python中最最基础的开始。

《Python编程,从入门到实践》

01 推荐理由

本书最大的特点就是零基础完全不懂编程的小白也能够学习,新手想学习选它绝对错不了。知识点由浅入深循循渐进,并配有视频教程手把手教学,同时所需的软件也是免费的。本书也配有相关辅导书籍,有兴趣的话可以去看看,但是请记住,这本书是最核心的。

《利用Python进行数据分析》

01 推荐理由

不像别的编程书一样,从盘古开天辟地开始讲起。这本书是直接应用到数据分析的,所以很多在数据分析上应用不那么频繁的模块也就没有讲。

本书第二版针对Python 3.6进行了更新,并增加实际案例向你展示如何高效地解决一系列数据分析问题。你将在阅读过程中学习到新版本的pandas、NumPy、IPython和Jupyter。

4.R语言

R是用于统计分析、绘图的语言和操作环境。但是R是有一定难度的,没有基础的话请谨慎尝试!推荐书籍:

《R语言入门与实践》

01 推荐理由

本书通过三个精心挑选的例子,深入浅出地讲解如何使用R语言玩转数据。将数据科学家必需的专业技能融合其中,教会读者如何将数据存储到计算机内存中,如何在必要的时候转换内存中的数据值,如何用R编写自己的程序并将其用于数据分析和模拟运行。

案例提升类

《活用数据:驱动业务的数据分析实战》

01 推荐理由

是一本用数据来帮助企业破解业务难题的实操书,有理论、有方法、有实战案例。具有业务驱动、案例闭环、思维先导、实战还原4大特色,同时在思路上清晰连贯,在表达上深入浅出,既能帮助数据分析从业者入门和提升,也能辅助企业各业务部门和各级管理人员做量化决策。

《精益数据分析》

01 推荐理由

本书展示了如何验证自己的设想、找到真正的客户、打造能赚钱的产品,以及提升企业知名度。30多个案例分析,全球100多位知名企业家的真知灼见,为你呈现来之不易、经过实践检验的创业心得和宝贵经验,值得每位创业家和企业家一读。

初学者学习SQL用那本书比较好?

《深入浅出——SQL Server 2000开发、管理与应用实例》

作者:邹健

编著出版社:人民邮电出版社

出版时间:2008年08月

定价:59元

本书从应用、开发和管理3个角度逐步深入,全面介绍SQL Server 2000数据库技术,不但整合了资深专家数年工作实践和宝贵经验,还根据DBA所需具备的从业素质规划了内容结构。

本书全面系统地介绍了SQL Server开发和管理的应用技术,涉及安装和配置SQL Server、日期处理、字符处理、排序规则、编号处理、数据统计与汇总、分页处理、树形数据处理、数据导入与导出、作业、数据备份与还原、用户定义数据类型、数据库安全、系统表应用实例、索引、事务及锁、SQL Server应用疑难解答等内容。

本书不但融合了作者在使用SQL Server 2000过程中遇到的各种常见问题和应用案例,还总结了作者几年来在CSDN社区SQL Server版所解决的大量问题,面向实际项目需求,涉及不同类型的应用,能够多角度地引导读者学习相关知识。针对各类问题,书中提供了详细的操作步骤和解决思路,具有很强的实用性和可操作性。

本书适用于已经掌握了SQL Server基础知识,但缺少实践经验的读者,对初学者来说更是一本入门与进阶的必备指导用书。

邹建,网名ZJCXC,CSDN社区MS SQL Server版大版主,微软2004—2007 SQL Server MVP(微软最有价值专家)。著有《中文版SQL Server 2000开发与管理应用实例》一书,该书深受读者好评。熟悉数据库技术,对MS SQL Server数据库体系结构、备份恢复、设计、管理、性能优化等都有深

有什么前端学习方法?

学习前端最有效的方法是持之以恒的坚持。

无论做什么,先别想那么多先做了再说,因为人都是懒惰,什么事情最先想到的都是走捷径,深怕付出了没有回报。学习这个事情,从小学老师就说,一定要好好学习天天向上,去总结了真的努力了,到头来除了抱怨还抱怨,总期望天上掉馅饼。方法有很多种,真的适合的才是真的有用,什么样的方法才适合自己,无论什么方法你得做了才有效!所以没有最有效的方法,只有持之以恒的坚持才是真正有效的。

作为一个初学者,你必须明确系统的学习方案,我建议一定有一个指导的人,全靠自己学,放弃的几率非常大,在你对于web前端还没有任何概念的时候,需要一个人领进门,之后就都靠自己钻研,第一步就是确定web前端都需要哪些内容,并且在多少时间内学完,建议时间6个月保底。

视频为主,书为辅。很多初学者在学习前端的时候非常喜欢去买书,但是最后的结果是什么?看来看去什么都不会写,所以在这里给大家提醒,书可以看,但是是在建立于你已经对于某个知识点有了具体操作的执行后,在用书去巩固概念,这样更加利于你对于知识的理解。

对于学习技术来讲,掌握一个学习方法是非常重要的,其实对于学习web前端来讲,学习方法确实很多都是相通的,一旦学习方法不对,可能就会造成“方法不对,努力白费”。其实关于这方面还是很多的,我就简单说个例子,有的人边听课边跟着敲代码,这样就不对,听课的时候就专心听,做题的时候就专心做题,这都是过来人的经验,一定要听。根据每个人的不同,可能学习方法也会有所出路,找到适合你自己的学习法方法是学习的前提。

不建议自己一个人瞎学,在我了解学习编程的这些人来看,从零基础开始学并且最后成功做这份工作的其实并没有几个,我觉得大部分原因就是因为他们都不了解web前端是干什么的,学什么的,就盲目的买书看,到处找视频看,最后看着看着就放弃了,所以我建议初学者在没有具体概念之前,还是找有经验的人请教一下,聊过之后你就会知道web前端具体是干什么的,该怎么学,这是我个人的小建议,可以不采纳。

自学路线:

第1阶段:前端页面重构(4周)

内容包含了:(PC端网站布局项目、HTML5+CSS3基础项目、WebApp页面布局项目)

第2阶段:JavaScript高级程序设计(5周)

内容包含:(原生JavaScript交互功能开发项目、面向对象进阶与ES5/ES6应用项目、JavaScript工具库自主研发项目)

第3阶段:PC端全栈项目开发(3周)

内容包含:(jQuery经典交互特效开发、HTTP协议、Ajax进阶与PHP/JAVA开发项目、前端工程化与模块化应用项目、PC端网站开发项目、PC端管理信息系统前端开发项目)

第4阶段:移动端项目开发(6周)

内容包含:(Touch端项目、微信场景项目、应用Angular+Ionic开发WebApp项目、应用Vue.js开发WebApp项目、应用React.js开发WebApp项目)

第5阶段:混合(Hybrid,ReactNative)开发(1周)

内容包含:(微信小程序开发、ReactNative、各类混合应用开发)

第6阶段:NodeJS全栈开发(1周)

内容包括:(WebApp后端系统开发、一、NodeJS基础与NodeJS核心模块二、Express三、noSQL数据库)。

网上有很多免费的web前端视频教程,可以跟着学学,给你推荐一套视频教程:网页链接。

怎么学习SQL语句?

第一:了解Sql语言的基本语法。Sql语言本身比较简单易学,说到底就是“增删改查”四个基本操作,而在这四个基本操作当中,查询是重中之重,因为大多数的数据库操作都是以查询为主,而查询所涉及到的内容也比较多。在学习Sql语言基本语法的时候,在众多的学习资料当中,可以关注一下这本书:

第二:一边使用一边学习。学习Sql语言一定要一边使用一边学习,一定要多做实验,由于Sql语言的实验比较容易完成,结果也比较直观,所以大多数人借助各种实验也能快速掌握Sql语言。按照历史经验来看,学习存储过程是一个难点,这部分应该通过大量的实验来逐渐掌握,建议可以跟着shulanxt上的例子一起练习。

第三:行业实践。在掌握了基本的Sql语法之后,接下来一定要有一个行业实践环境,这对于提升Sql语言的实践应用能力是非常有帮助的。在进行行业实践的过程中,不仅能够丰富自身的技术知识,同时也会积累一定的行业知识。

最后,虽然Sql语言的入门比较简单,但是Sql语言本身也可以构建出比较复杂的数据管理程序,要想全面掌握并熟练使用Sql语言也并不容易。

想要学习大数据,应该怎么入门?

如今大数据发展得可谓是如日中天,各行各业对于大数据分析和大数据处理的需求也是与日俱增,越来越多的决策、建议、规划和报告,都要依靠大数据的支撑,学习大数据成了不少人提升或转行的机会。因此,入门大数据开始成为很多人的第一步,下面给大家讲讲,究竟大数据入门,首要掌握的知识点有哪些,如何一步一步进阶呢?

首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。楼主是JAVA毕业的,这无疑是极好的开头和奠基啊,可谓是赢在了起跑线上,接收和吸收大数据领域的知识会比一般人更加得心应手。

Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础

Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。

好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。

Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapReduce和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapReduce是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。

记住学到这里可以作为你学大数据的一个节点。

Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。

Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。

Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。

Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapReduce程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。

Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapReduce、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。

Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。

Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。

Spark:它是用来弥补基于MapReduce处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。


分享题目:nosql入门进阶,nosql的三大基石
当前URL:http://cqcxhl.com/article/dscdssd.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP