重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

不是nosql数据库分类,nosql数据库有哪四种

nosql数据库的几大类型

1. 键值数据库

成都创新互联是一家专注于成都网站建设、网站建设与策划设计,合江网站建设哪家好?成都创新互联做网站,专注于网站建设10年,网设计领域的专业建站公司;建站业务涵盖:合江等地区。合江做网站价格咨询:13518219792

相关产品:Redis、Riak、SimpleDB、Chordless、Scalaris、Memcached

应用:内容缓存

优点:扩展性好、灵活性好、大量写操作时性能高

缺点:无法存储结构化信息、条件查询效率较低

使用者:百度云(Redis)、GitHub(Riak)、BestBuy(Riak)、Twitter(Ridis和Memcached)

2. 列族数据库

相关产品:BigTable、HBase、Cassandra、HadoopDB、GreenPlum、PNUTS

应用:分布式数据存储与管理

优点:查找速度快、可扩展性强、容易进行分布式扩展、复杂性低

使用者:Ebay(Cassandra)、Instagram(Cassandra)、NASA(Cassandra)、Facebook(HBase)

3. 文档数据库

相关产品:MongoDB、CouchDB、ThruDB、CloudKit、Perservere、Jackrabbit

应用:存储、索引并管理面向文档的数据或者类似的半结构化数据

优点:性能好、灵活性高、复杂性低、数据结构灵活

缺点:缺乏统一的查询语言

使用者:百度云数据库(MongoDB)、SAP(MongoDB)

4. 图形数据库

图形数据库-使用图作为数据模型来存储数据。

相关产品:Neo4J、OrientDB、InfoGrid、GraphDB

应用:大量复杂、互连接、低结构化的图结构场合,如社交网络、推荐系统等

优点:灵活性高、支持复杂的图形算法、可用于构建复杂的关系图谱

缺点:复杂性高、只能支持一定的数据规模

使用者:Adobe(Neo4J)、Cisco(Neo4J)、T-Mobile(Neo4J)

哪个属于Nosql数据库

NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在处理web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,出现了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。

常见的Nosql数据库有:

一、Redis数据库

Redis(RemoteDictionaryServer),即远程字典服务,是一个开源的使用ANSIC语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。从2010年3月15日起,Redis的开发工作由VMware主持。从2013年5月开始,Redis的开发由Pivotal赞助。

二、MongoDB数据库

MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。

Mongo最大的特点是它支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。

扩展资料:

对于NoSQL并没有一个明确的范围和定义,但是他们都普遍存在下面一些共同特征:

一、易扩展

NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。无形之间,在架构的层面上带来了可扩展的能力。

二、大数据量,高性能

NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用Query Cache。NoSQL的Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说性能就要高很多。

三、灵活的数据模型

NoSQL无须事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是——个噩梦。这点在大数据量的Web2.0时代尤其明显。

四、高可用

NoSQL在不太影响性能的情况,就可以方便地实现高可用的架构。比如Cassandra、HBase模型,通过复制模型也能实现高可用。

参考资料来源:百度百科-NoSQL

nosql数据库的四种类型

一般将NoSQL数据库分为四大类:键值(Key-Value)存储数据库、列存储数据库、文档型数据库和图形(Graph)数据库。它们的数据模型、优缺点、典型应用场景。

键值(Key-Value)存储数据库Key指向Value的键值对,通常用hash表来实现查找速度快数据无结构化(通常只被当作字符串或者二进制数据)内容缓存,主要用于处理大量数据的高访问负载,也用于一些日志系统等。

列存储数据库,以列簇式存储,将同一列数据存在一起查找速度快,可扩展性强,更容易进行分布式扩展功能相对局限分布式的文件系统。

文档型数据库,Key-Value对应的键值对,Value为结构化数据,数据结构要求不严格,表结构可变(不需要像关系型数据库一样需预先定义表结构),查询性能不高,而且缺乏统一的查询语法,Web应用。

图形(Graph)数据库,图结构,利用图结构相关算法(如最短路径寻址,N度关系查找等),很多时候需要对整个图做计算才能得出需要的信息,而且这种结构不太好做分布式的集群方案,社交网络,推荐系统等。

哪个属于NoSQL数据库

1、键值(Key-Value)存储数据库

这一类数据库主要会使用到一个哈希表,这个表中有一个特定的键和一个指针指向特定的数据。Key/value模型对于IT系统来说的优势在于简单、易部署。

但是如果数据库管理员(DBA)只对部分值进行查询或更新的时候,Key/value就显得效率低下了。举例如:Tokyo Cabinet/Tyrant,Redis,Voldemort,Oracle BDB。

2、列存储数据库

这部分数据库通常用来应对分布式存储的海量数据。键仍然存在,但是它们的特点是指向了多个列。这些列是由列家族来安排的。如:Cassandra,HBase,Riak。

3、文档型数据库

文档型数据库的灵感是来自于Lotus Notes办公软件的,而且它同第一种键值存储相类似。该类型的数据模型是版本化的文档,半结构化的文档以特定的格式存储,比如JSON。

文档型数据库可以看作是键值数据库的升级版,允许之间嵌套键值,在处理网页等复杂数据时,文档型数据库比传统键值数据库的查询效率更高。如:CouchDB,MongoDb,国内也有文档型数据库SequoiaDB,已经开源。

4、图形(Graph)数据库

图形结构的数据库同其他行列以及刚性结构的SQL数据库不同,它是使用灵活的图形模型,并且能够扩展到多个服务器上。

NoSQL数据库没有标准的查询语言(SQL),因此进行数据库查询需要制定数据模型。许多NoSQL数据库都有REST式的数据接口或者查询API。如:Neo4J,InfoGrid,Infinite Graph。

扩展资料

NoSQL数据库适合追求速度和可扩展性、业务多变的应用场景。对于非结构化数据的处理更合适,如文章、评论,这些数据如全文搜索、机器学习通常只用于模糊处理,并不需要像结构化数据一样,进行精确查询,而且这类数据的数据规模往往是海量的,数据规模的增长往往也是不可能预期的。

而NoSQL数据库的扩展能力几乎也是无限的,所以NoSQL数据库可以很好地满足这一类数据的存储。NoSQL数据库利用key-value可以大量的获取大量的非结构化数据,并且数据的获取效率很高,但用它查询结构化数据效果就比较差。

参考资料来源:百度百科-数据库

参考资料来源:百度百科-NoSQL


分享名称:不是nosql数据库分类,nosql数据库有哪四种
URL链接:http://cqcxhl.com/article/dschhgc.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP