重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

神经网络传递java代码,神经网络传递java代码

rbf神经网络在java中如何实现原代码

rbf神经网络有多种学习策略,首先选取中心,可以随机选,也可采用K均值聚类,然后学习权值,可采用伪逆法(涉及矩阵的奇异值分解),也可以采用最小均方误差法,或者进化算法,上述方法中心是固定的,也可采用梯度下降法同时学习中心、宽度、权值,这个比较复杂。具体参考《神经网络原理》。

站在用户的角度思考问题,与客户深入沟通,找到高州网站设计与高州网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:网站设计、成都做网站、企业官网、英文网站、手机端网站、网站推广、空间域名、网页空间、企业邮箱。业务覆盖高州地区。

你用Java写可以参考Weka,其完全开源,不过我没有看过源码,不知其用何种学习策略。最近用C++写了一个简单的rbf,即固定中心、最小均方误差法学习权值,但我发现采用K均值聚类选中心跟随机选没有什么区别,不知二者有何区别?自己写伪逆法对于我来说基本不可能,及其复杂,我看到过某人写了个天书般的程序,一个函数500行。

希望对你有帮助,如果你有新发现,欢迎与我探讨,国内估计没多少人真正自己写过RBF,都用MATLAB代入了事。

求神经网络算法的一个代码示例(C、C++或java一类的)

在matlab里建立一个.m的M文件,把代码输进去,保存,运行就可以了。 演示程序是在command 里打demo就可以了找到了 . 你邮箱多少,我只有简单的BP神经网络程序。

如何用70行Java代码实现神经网络算法

如何用70行Java代码实现神经网络算法

import java.util.Random;

public class BpDeep{

public double[][] layer;//神经网络各层节点

public double[][] layerErr;//神经网络各节点误差

public double[][][] layer_weight;//各层节点权重

public double[][][] layer_weight_delta;//各层节点权重动量

public double mobp;//动量系数

public double rate;//学习系数

public BpDeep(int[] layernum, double rate, double mobp){

this.mobp = mobp;

this.rate = rate;

layer = new double[layernum.length][];

layerErr = new double[layernum.length][];

layer_weight = new double[layernum.length][][];

layer_weight_delta = new double[layernum.length][][];

Random random = new Random();

for(int l=0;llayernum.length;l++){

layer[l]=new double[layernum[l]];

layerErr[l]=new double[layernum[l]];

if(l+1layernum.length){

layer_weight[l]=new double[layernum[l]+1][layernum[l+1]];

layer_weight_delta[l]=new double[layernum[l]+1][layernum[l+1]];

for(int j=0;jlayernum[l]+1;j++)

for(int i=0;ilayernum[l+1];i++)

layer_weight[l][j][i]=random.nextDouble();//随机初始化权重

}

}

}

//逐层向前计算输出

public double[] computeOut(double[] in){

for(int l=1;llayer.length;l++){

for(int j=0;jlayer[l].length;j++){

double z=layer_weight[l-1][layer[l-1].length][j];

for(int i=0;ilayer[l-1].length;i++){

layer[l-1][i]=l==1?in[i]:layer[l-1][i];

z+=layer_weight[l-1][i][j]*layer[l-1][i];

}

layer[l][j]=1/(1+Math.exp(-z));

}

}

return layer[layer.length-1];

}

//逐层反向计算误差并修改权重

public void updateWeight(double[] tar){

int l=layer.length-1;

for(int j=0;jlayerErr[l].length;j++)

layerErr[l][j]=layer[l][j]*(1-layer[l][j])*(tar[j]-layer[l][j]);

while(l--0){

for(int j=0;jlayerErr[l].length;j++){

double z = 0.0;

for(int i=0;ilayerErr[l+1].length;i++){

z=z+l0?layerErr[l+1][i]*layer_weight[l][j][i]:0;

layer_weight_delta[l][j][i]= mobp*layer_weight_delta[l][j][i]+rate*layerErr[l+1][i]*layer[l][j];//隐含层动量调整

layer_weight[l][j][i]+=layer_weight_delta[l][j][i];//隐含层权重调整

if(j==layerErr[l].length-1){

layer_weight_delta[l][j+1][i]= mobp*layer_weight_delta[l][j+1][i]+rate*layerErr[l+1][i];//截距动量调整

layer_weight[l][j+1][i]+=layer_weight_delta[l][j+1][i];//截距权重调整

}

}

layerErr[l][j]=z*layer[l][j]*(1-layer[l][j]);//记录误差

}

}

}

public void train(double[] in, double[] tar){

double[] out = computeOut(in);

updateWeight(tar);

}

}

急求BP神经网络算法,用java实现!!!

见附件,一个基本的用java编写的BP网络代码。

BP(Back Propagation)神经网络是86年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。

求完整的BP神经网络C++/java代码。最好有比较完整的注释和测试用例

你只要把训练步骤熟悉一下,源码一点不难。建议看下《神经网络原理》哈根,有一章叫 一个说明性实例 ,然后第四章有BP完整进化案例(多层感知器那章)。还有一本书《神经网络设计》,国内的书无出其右…好运!

如何用70行Java代码实现深度神经网络算法

matlab有神经网络和遗传算法的工具箱,我没用过,不过你的问题看起来也很基础的,应该容易做


本文标题:神经网络传递java代码,神经网络传递java代码
文章源于:http://cqcxhl.com/article/dschodh.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP