重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
一般来说,上面这种情况更多是跳出循环。
创新互联公司网站建设提供从项目策划、软件开发,软件安全维护、网站优化(SEO)、网站分析、效果评估等整套的建站服务,主营业务为成都网站设计、成都网站建设、外贸网站建设,app开发定制以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。创新互联公司深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!
break 跳出循环
continue 跳出本次循环,继续执行下次循环
至于退出进程
import sys
sys.exit()
python中创建进程的方式
一、Process(target=函数名,args=(),name,kwargs)
target:加进程调用的函数名,一般不加括号
name:进程的名字
kwargs:字典参数
args:元组参数,如果参数就一个,记得加逗号’,’
Python多线程与多进程中join()方法的效果是相同的
join所完成的工作就是线程同步,即主线程任务结束之后,进入阻塞状态,一直等待其他的子线程执行结束之后,主线程再终止
import threading
import time
基于官方文档:
日乐购,刚才看到的一个博客,写的都不太对,还是基于官方的比较稳妥
我就是喜欢抄官方的,哈哈
通常我们使用Process实例化一个进程,并调用 他的 start() 方法启动它。
这种方法和 Thread 是一样的。
上图中,我写了 p.join() 所以主进程是 等待 子进程执行完后,才执行 print("运行结束")
否则就是反过来了(这个不一定,看你的语句了,顺序其实是随机的)例如:
主进加个 sleep
所以不加join() ,其实子进程和主进程是各干各的,谁也不等谁。都执行完后,文件运行就结束了
上面我们用了 os.getpid() 和 os.getppid() 获取 当前进程,和父进程的id
下面就讲一下,这两个函数的用法:
os.getpid()
返回当前进程的id
os.getppid()
返回父进程的id。 父进程退出后,unix 返回初始化进程(1)中的一个
windows返回相同的id (可能被其他进程使用了)
这也就解释了,为啥我上面 的程序运行多次, 第一次打印的parentid 都是 14212 了。
而子进程的父级 process id 是调用他的那个进程的 id : 1940
视频笔记:
多进程:使用大致方法:
参考: 进程通信(pipe和queue)
pool.map (函数可以有return 也可以共享内存或queue) 结果直接是个列表
poll.apply_async() (同map,只不过是一个进程,返回结果用 xx.get() 获得)
报错:
参考 :
把 pool = Pool() 放到 if name == " main ": 下面初始化搞定。
结果:
这个肯定有解释的
测试多进程计算效果:
进程池运行:
结果:
普通计算:
我们同样传入 1 2 10 三个参数测试:
其实对比下来开始快了一半的;
我们把循环里的数字去掉一个 0;
单进程:
多进程:
两次测试 单进程/进程池 分别为 0.669 和 0.772 几乎成正比的。
问题 二:
视图:
post 视图里面
Music 类:
直接报错:
写在 类里面也 在函数里用 self.pool 调用也不行,也是相同的错误。
最后 把 pool = Pool 直接写在 search 函数里面,奇迹出现了:
前台也能显示搜索的音乐结果了
总结一点,进程这个东西,最好 写在 直接运行的函数里面,而不是 一个函数跳来跳去。因为最后可能 是在子进程的子进程运行的,这是不许的,会报错。
还有一点,多进程运行的函数对象,不能是 lambda 函数。也许lambda 虚拟,在内存??
使用 pool.map 子进程 函数报错,导致整个 pool 挂了:
参考:
主要你要,对函数内部捕获错误,而不能让异常抛出就可以了。
关于map 传多个函数参数
我一开始,就是正常思维,多个参数,搞个元祖,让参数一一对应不就行了:
报错:
参考:
普通的 process 当让可以穿多个参数,map 却不知道咋传的。
apply_async 和map 一样,不知道咋传的。
最简单的方法:
使用 starmap 而不是 map
结果:
子进程结束
1.8399453163146973
成功拿到结果了
关于map 和 starmap 不同的地方看源码:
关于apply_async() ,我没找到多参数的方法,大不了用 一个迭代的 starmap 实现。哈哈
关于 上面源码里面有 itertools.starmap
itertools 用法参考:
有个问题,多进程最好不要使用全部的 cpu , 因为这样可能影响其他任务,所以 在进程池 添加 process 参数 指定,cpu 个数:
上面就是预留了 一个cpu 干其他事的
后面直接使用 Queue 遇到这个问题:
解决:
Manager().Queue() 代替 Queue()
因为 queue.get() 是堵塞型的,所以可以提前判断是不是 空的,以免堵塞进程。比如下面这样:
使用 queue.empty() 空为True
上篇文章简单介绍了multiprocessing模块,本文将要介绍进程之间的数据共享和信息传递的概念。
在多进程处理中,所有新创建的进程都会有这两个特点:独立运行,有自己的内存空间。
我们来举个例子展示一下:
这个程序的输出结果是:
在上面的程序中我们尝试在两个地方打印全局列表result的内容:
我们再用一张图来帮助理解记忆不同进程间的数据关系:
如果程序需要在不同的进程之间共享一些数据的话,该怎么做呢?不用担心,multiprocessing模块提供了Array对象和Value对象,用来在进程之间共享数据。
所谓Array对象和Value对象分别是指从共享内存中分配的ctypes数组和对象。我们直接来看一个例子,展示如何用Array对象和Value对象在进程之间共享数据:
程序输出的结果如下:
成功了!主程序和p1进程输出了同样的结果,说明程序中确实完成了不同进程间的数据共享。那么我们来详细看一下上面的程序做了什么:
在主程序中我们首先创建了一个Array对象:
向这个对象输入的第一个参数是数据类型:i表示整数,d代表浮点数。第二个参数是数组的大小,在这个例子中我们创建了包含4个元素的数组。
类似的,我们创建了一个Value对象:
我们只对Value对象输入了一个参数,那就是数据类型,与上述的方法一致。当然,我们还可以对其指定一个初始值(比如10),就像这样:
随后,我们在创建进程对象时,将刚创建好的两个对象:result和square_sum作为参数输入给进程:
在函数中result元素通过索引进行数组赋值,square_sum通过 value 属性进行赋值。
注意:为了完整打印result数组的结果,需要使用 result[:] 进行打印,而square_sum也需要使用 value 属性进行打印:
每当python程序启动时,同时也会启动一个服务器进程。随后,只要我们需要生成一个新进程,父进程就会连接到服务器并请求它派生一个新进程。这个服务器进程可以保存Python对象,并允许其他进程使用代理来操作它们。
multiprocessing模块提供了能够控制服务器进程的Manager类。所以,Manager类也提供了一种创建可以在不同流程之间共享的数据的方法。
服务器进程管理器比使用共享内存对象更灵活,因为它们可以支持任意对象类型,如列表、字典、队列、值、数组等。此外,单个管理器可以由网络上不同计算机上的进程共享。
但是,服务器进程管理器的速度比使用共享内存要慢。
让我们来看一个例子:
这个程序的输出结果是:
我们来理解一下这个程序做了什么:首先我们创建了一个manager对象
在with语句下的所有行,都是在manager对象的范围内的。接下来我们使用这个manager对象创建了列表(类似的,我们还可以用 manager.dict() 创建字典)。
最后我们创建了进程p1(用于在records列表中插入一条新的record)和p2(将records打印出来),并将records作为参数进行传递。
服务器进程的概念再次用下图总结一下:
为了能使多个流程能够正常工作,常常需要在它们之间进行一些通信,以便能够划分工作并汇总最后的结果。multiprocessing模块支持进程之间的两种通信通道:Queue和Pipe。
使用队列来回处理多进程之间的通信是一种比较简单的方法。任何Python对象都可以使用队列进行传递。我们来看一个例子:
上面这个程序的输出结果是:
我们来看一下上面这个程序到底做了什么。首先我们创建了一个Queue对象:
然后,将这个空的Queue对象输入square_list函数。该函数会将列表中的数平方,再使用 put() 方法放入队列中:
随后使用 get() 方法,将q打印出来,直至q重新称为一个空的Queue对象:
我们还是用一张图来帮助理解记忆:
一个Pipe对象只能有两个端点。因此,当进程只需要双向通信时,它会比Queue对象更好用。
multiprocessing模块提供了 Pipe() 函数,该函数返回由管道连接的一对连接对象。 Pipe() 返回的两个连接对象分别表示管道的两端。每个连接对象都有 send() 和 recv() 方法。
我们来看一个例子:
上面这个程序的输出结果是:
我们还是来看一下这个程序到底做了什么。首先创建了一个Pipe对象:
与上文说的一样,该对象返回了一对管道两端的两个连接对象。然后使用 send() 方法和 recv() 方法进行信息的传递。就这么简单。在上面的程序中,我们从一端向另一端发送一串消息。在另一端,我们收到消息,并在收到END消息时退出。
要注意的是,如果两个进程(或线程)同时尝试从管道的同一端读取或写入管道中的数据,则管道中的数据可能会损坏。不过不同的进程同时使用管道的两端是没有问题的。还要注意,Queue对象在进程之间进行了适当的同步,但代价是增加了计算复杂度。因此,Queue对象对于线程和进程是相对安全的。
最后我们还是用一张图来示意:
Python的multiprocessing模块还剩最后一篇文章:多进程的同步与池化
敬请期待啦!