重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

GO语言取得随机数,golang 随机字符串

彻底理解Golang Map

本文目录如下,阅读本文后,将一网打尽下面Golang Map相关面试题

创新互联成立与2013年,先为城口等服务建站,城口等地企业,进行企业商务咨询服务。为城口企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。

Go中的map是一个指针,占用8个字节,指向hmap结构体; 源码 src/runtime/map.go 中可以看到map的底层结构

每个map的底层结构是hmap,hmap包含若干个结构为bmap的bucket数组。每个bucket底层都采用链表结构。接下来,我们来详细看下map的结构

bmap 就是我们常说的“桶”,一个桶里面会最多装 8 个 key,这些 key 之所以会落入同一个桶,是因为它们经过哈希计算后,哈希结果是“一类”的,关于key的定位我们在map的查询和插入中详细说明。在桶内,又会根据 key 计算出来的 hash 值的高 8 位来决定 key 到底落入桶内的哪个位置(一个桶内最多有8个位置)。

bucket内存数据结构可视化如下:

注意到 key 和 value 是各自放在一起的,并不是 key/value/key/value/... 这样的形式。源码里说明这样的好处是在某些情况下可以省略掉 padding字段,节省内存空间。

当 map 的 key 和 value 都不是指针,并且 size 都小于 128 字节的情况下,会把 bmap 标记为不含指针,这样可以避免 gc 时扫描整个 hmap。但是,我们看 bmap 其实有一个 overflow 的字段,是指针类型的,破坏了 bmap 不含指针的设想,这时会把 overflow 移动到 extra 字段来。

map是个指针,底层指向hmap,所以是个引用类型

golang 有三个常用的高级类型 slice 、map、channel, 它们都是 引用类型 ,当引用类型作为函数参数时,可能会修改原内容数据。

golang 中没有引用传递,只有值和指针传递。所以 map 作为函数实参传递时本质上也是值传递,只不过因为 map 底层数据结构是通过指针指向实际的元素存储空间,在被调函数中修改 map,对调用者同样可见,所以 map 作为函数实参传递时表现出了引用传递的效果。

因此,传递 map 时,如果想修改map的内容而不是map本身,函数形参无需使用指针

map 底层数据结构是通过指针指向实际的元素 存储空间 ,这种情况下,对其中一个map的更改,会影响到其他map

map 在没有被修改的情况下,使用 range 多次遍历 map 时输出的 key 和 value 的顺序可能不同。这是 Go 语言的设计者们有意为之,在每次 range 时的顺序被随机化,旨在提示开发者们,Go 底层实现并不保证 map 遍历顺序稳定,请大家不要依赖 range 遍历结果顺序。

map 本身是无序的,且遍历时顺序还会被随机化,如果想顺序遍历 map,需要对 map key 先排序,再按照 key 的顺序遍历 map。

map默认是并发不安全的,原因如下:

Go 官方在经过了长时间的讨论后,认为 Go map 更应适配典型使用场景(不需要从多个 goroutine 中进行安全访问),而不是为了小部分情况(并发访问),导致大部分程序付出加锁代价(性能),决定了不支持。

场景: 2个协程同时读和写,以下程序会出现致命错误:fatal error: concurrent map writes

如果想实现map线程安全,有两种方式:

方式一:使用读写锁 map + sync.RWMutex

方式二:使用golang提供的 sync.Map

sync.map是用读写分离实现的,其思想是空间换时间。和map+RWLock的实现方式相比,它做了一些优化:可以无锁访问read map,而且会优先操作read map,倘若只操作read map就可以满足要求(增删改查遍历),那就不用去操作write map(它的读写都要加锁),所以在某些特定场景中它发生锁竞争的频率会远远小于map+RWLock的实现方式。

golang中map是一个kv对集合。底层使用hash table,用链表来解决冲突 ,出现冲突时,不是每一个key都申请一个结构通过链表串起来,而是以bmap为最小粒度挂载,一个bmap可以放8个kv。在哈希函数的选择上,会在程序启动时,检测 cpu 是否支持 aes,如果支持,则使用 aes hash,否则使用 memhash。

map有3钟初始化方式,一般通过make方式创建

map的创建通过生成汇编码可以知道,make创建map时调用的底层函数是 runtime.makemap 。如果你的map初始容量小于等于8会发现走的是 runtime.fastrand 是因为容量小于8时不需要生成多个桶,一个桶的容量就可以满足

makemap函数会通过 fastrand 创建一个随机的哈希种子,然后根据传入的 hint 计算出需要的最小需要的桶的数量,最后再使用 makeBucketArray 创建用于保存桶的数组,这个方法其实就是根据传入的 B 计算出的需要创建的桶数量在内存中分配一片连续的空间用于存储数据,在创建桶的过程中还会额外创建一些用于保存溢出数据的桶,数量是 2^(B-4) 个。初始化完成返回hmap指针。

找到一个 B,使得 map 的装载因子在正常范围内

Go 语言中读取 map 有两种语法:带 comma 和 不带 comma。当要查询的 key 不在 map 里,带 comma 的用法会返回一个 bool 型变量提示 key 是否在 map 中;而不带 comma 的语句则会返回一个 value 类型的零值。如果 value 是 int 型就会返回 0,如果 value 是 string 类型,就会返回空字符串。

map的查找通过生成汇编码可以知道,根据 key 的不同类型,编译器会将查找函数用更具体的函数替换,以优化效率:

函数首先会检查 map 的标志位 flags。如果 flags 的写标志位此时被置 1 了,说明有其他协程在执行“写”操作,进而导致程序 panic。这也说明了 map 对协程是不安全的。

key经过哈希函数计算后,得到的哈希值如下(主流64位机下共 64 个 bit 位):

m: 桶的个数

从buckets 通过 hash m 得到对应的bucket,如果bucket正在扩容,并且没有扩容完成,则从oldbuckets得到对应的bucket

计算hash所在桶编号:

用上一步哈希值最后的 5 个 bit 位,也就是 01010 ,值为 10,也就是 10 号桶(范围是0~31号桶)

计算hash所在的槽位:

用上一步哈希值哈希值的高8个bit 位,也就是 10010111 ,转化为十进制,也就是151,在 10 号 bucket 中寻找** tophash 值(HOB hash)为 151* 的 槽位**,即为key所在位置,找到了 2 号槽位,这样整个查找过程就结束了。

如果在 bucket 中没找到,并且 overflow 不为空,还要继续去 overflow bucket 中寻找,直到找到或是所有的 key 槽位都找遍了,包括所有的 overflow bucket。

通过上面找到了对应的槽位,这里我们再详细分析下key/value值是如何获取的:

bucket 里 key 的起始地址就是 unsafe.Pointer(b)+dataOffset。第 i 个 key 的地址就要在此基础上跨过 i 个 key 的大小;而我们又知道,value 的地址是在所有 key 之后,因此第 i 个 value 的地址还需要加上所有 key 的偏移。

通过汇编语言可以看到,向 map 中插入或者修改 key,最终调用的是 mapassign 函数。

实际上插入或修改 key 的语法是一样的,只不过前者操作的 key 在 map 中不存在,而后者操作的 key 存在 map 中。

mapassign 有一个系列的函数,根据 key 类型的不同,编译器会将其优化为相应的“快速函数”。

我们只用研究最一般的赋值函数 mapassign 。

map的赋值会附带着map的扩容和迁移,map的扩容只是将底层数组扩大了一倍,并没有进行数据的转移,数据的转移是在扩容后逐步进行的,在迁移的过程中每进行一次赋值(access或者delete)会至少做一次迁移工作。

1.判断map是否为nil

每一次进行赋值/删除操作时,只要oldbuckets != nil 则认为正在扩容,会做一次迁移工作,下面会详细说下迁移过程

根据上面查找过程,查找key所在位置,如果找到则更新,没找到则找空位插入即可

经过前面迭代寻找动作,若没有找到可插入的位置,意味着需要扩容进行插入,下面会详细说下扩容过程

通过汇编语言可以看到,向 map 中删除 key,最终调用的是 mapdelete 函数

删除的逻辑相对比较简单,大多函数在赋值操作中已经用到过,核心还是找到 key 的具体位置。寻找过程都是类似的,在 bucket 中挨个 cell 寻找。找到对应位置后,对 key 或者 value 进行“清零”操作,将 count 值减 1,将对应位置的 tophash 值置成 Empty

再来说触发 map 扩容的时机:在向 map 插入新 key 的时候,会进行条件检测,符合下面这 2 个条件,就会触发扩容:

1、装载因子超过阈值

源码里定义的阈值是 6.5 (loadFactorNum/loadFactorDen),是经过测试后取出的一个比较合理的因子

我们知道,每个 bucket 有 8 个空位,在没有溢出,且所有的桶都装满了的情况下,装载因子算出来的结果是 8。因此当装载因子超过 6.5 时,表明很多 bucket 都快要装满了,查找效率和插入效率都变低了。在这个时候进行扩容是有必要的。

对于条件 1,元素太多,而 bucket 数量太少,很简单:将 B 加 1,bucket 最大数量( 2^B )直接变成原来 bucket 数量的 2 倍。于是,就有新老 bucket 了。注意,这时候元素都在老 bucket 里,还没迁移到新的 bucket 来。新 bucket 只是最大数量变为原来最大数量的 2 倍( 2^B * 2 ) 。

2、overflow 的 bucket 数量过多

在装载因子比较小的情况下,这时候 map 的查找和插入效率也很低,而第 1 点识别不出来这种情况。表面现象就是计算装载因子的分子比较小,即 map 里元素总数少,但是 bucket 数量多(真实分配的 bucket 数量多,包括大量的 overflow bucket)

不难想像造成这种情况的原因:不停地插入、删除元素。先插入很多元素,导致创建了很多 bucket,但是装载因子达不到第 1 点的临界值,未触发扩容来缓解这种情况。之后,删除元素降低元素总数量,再插入很多元素,导致创建很多的 overflow bucket,但就是不会触发第 1 点的规定,你能拿我怎么办?overflow bucket 数量太多,导致 key 会很分散,查找插入效率低得吓人,因此出台第 2 点规定。这就像是一座空城,房子很多,但是住户很少,都分散了,找起人来很困难

对于条件 2,其实元素没那么多,但是 overflow bucket 数特别多,说明很多 bucket 都没装满。解决办法就是开辟一个新 bucket 空间,将老 bucket 中的元素移动到新 bucket,使得同一个 bucket 中的 key 排列地更紧密。这样,原来,在 overflow bucket 中的 key 可以移动到 bucket 中来。结果是节省空间,提高 bucket 利用率,map 的查找和插入效率自然就会提升。

由于 map 扩容需要将原有的 key/value 重新搬迁到新的内存地址,如果有大量的 key/value 需要搬迁,会非常影响性能。因此 Go map 的扩容采取了一种称为“渐进式”的方式,原有的 key 并不会一次性搬迁完毕,每次最多只会搬迁 2 个 bucket。

上面说的 hashGrow() 函数实际上并没有真正地“搬迁”,它只是分配好了新的 buckets,并将老的 buckets 挂到了 oldbuckets 字段上。真正搬迁 buckets 的动作在 growWork() 函数中,而调用 growWork() 函数的动作是在 mapassign 和 mapdelete 函数中。也就是插入或修改、删除 key 的时候,都会尝试进行搬迁 buckets 的工作。先检查 oldbuckets 是否搬迁完毕,具体来说就是检查 oldbuckets 是否为 nil。

如果未迁移完毕,赋值/删除的时候,扩容完毕后(预分配内存),不会马上就进行迁移。而是采取 增量扩容 的方式,当有访问到具体 bukcet 时,才会逐渐的进行迁移(将 oldbucket 迁移到 bucket)

nevacuate 标识的是当前的进度,如果都搬迁完,应该和2^B的长度是一样的

在evacuate 方法实现是把这个位置对应的bucket,以及其冲突链上的数据都转移到新的buckets上。

转移的判断直接通过tophash 就可以,判断tophash中第一个hash值即可

遍历的过程,就是按顺序遍历 bucket,同时按顺序遍历 bucket 中的 key。

map遍历是无序的,如果想实现有序遍历,可以先对key进行排序

为什么遍历 map 是无序的?

如果发生过迁移,key 的位置发生了重大的变化,有些 key 飞上高枝,有些 key 则原地不动。这样,遍历 map 的结果就不可能按原来的顺序了。

如果就一个写死的 map,不会向 map 进行插入删除的操作,按理说每次遍历这样的 map 都会返回一个固定顺序的 key/value 序列吧。但是 Go 杜绝了这种做法,因为这样会给新手程序员带来误解,以为这是一定会发生的事情,在某些情况下,可能会酿成大错。

Go 做得更绝,当我们在遍历 map 时,并不是固定地从 0 号 bucket 开始遍历,每次都是从一个**随机值序号的 bucket 开始遍历,并且是从这个 bucket 的一个 随机序号的 cell **开始遍历。这样,即使你是一个写死的 map,仅仅只是遍历它,也不太可能会返回一个固定序列的 key/value 对了。

GO语言(十六):模糊测试入门(上)

本教程介绍了 Go 中模糊测试的基础知识。通过模糊测试,随机数据会针对您的测试运行,以尝试找出漏洞或导致崩溃的输入。可以通过模糊测试发现的一些漏洞示例包括 SQL 注入、缓冲区溢出、拒绝服务和跨站点脚本攻击。

在本教程中,您将为一个简单的函数编写一个模糊测试,运行 go 命令,并调试和修复代码中的问题。

首先,为您要编写的代码创建一个文件夹。

1、打开命令提示符并切换到您的主目录。

在 Linux 或 Mac 上:

在 Windows 上:

2、在命令提示符下,为您的代码创建一个名为 fuzz 的目录。

3、创建一个模块来保存您的代码。

运行go mod init命令,为其提供新代码的模块路径。

接下来,您将添加一些简单的代码来反转字符串,稍后我们将对其进行模糊测试。

在此步骤中,您将添加一个函数来反转字符串。

a.使用您的文本编辑器,在 fuzz 目录中创建一个名为 main.go 的文件。

独立程序(与库相反)始终位于 package 中main。

此函数将接受string,使用byte进行循环 ,并在最后返回反转的字符串。

此函数将运行一些Reverse操作,然后将输出打印到命令行。这有助于查看运行中的代码,并可能有助于调试。

e.该main函数使用 fmt 包,因此您需要导入它。

第一行代码应如下所示:

从包含 main.go 的目录中的命令行,运行代码。

可以看到原来的字符串,反转它的结果,然后再反转它的结果,就相当于原来的了。

现在代码正在运行,是时候测试它了。

在这一步中,您将为Reverse函数编写一个基本的单元测试。

a.使用您的文本编辑器,在 fuzz 目录中创建一个名为 reverse_test.go 的文件。

b.将以下代码粘贴到 reverse_test.go 中。

这个简单的测试将断言列出的输入字符串将被正确反转。

使用运行单元测试go test

接下来,您将单元测试更改为模糊测试。

单元测试有局限性,即每个输入都必须由开发人员添加到测试中。模糊测试的一个好处是它可以为您的代码提供输入,并且可以识别您提出的测试用例没有达到的边缘用例。

在本节中,您将单元测试转换为模糊测试,这样您就可以用更少的工作生成更多的输入!

请注意,您可以将单元测试、基准测试和模糊测试保存在同一个 *_test.go 文件中,但对于本示例,您将单元测试转换为模糊测试。

在您的文本编辑器中,将 reverse_test.go 中的单元测试替换为以下模糊测试。

Fuzzing 也有一些限制。在您的单元测试中,您可以预测Reverse函数的预期输出,并验证实际输出是否满足这些预期。

例如,在测试用例Reverse("Hello, world")中,单元测试将返回指定为"dlrow ,olleH".

模糊测试时,您无法预测预期输出,因为您无法控制输入。

但是,Reverse您可以在模糊测试中验证函数的一些属性。在这个模糊测试中检查的两个属性是:

(1)将字符串反转两次保留原始值

(2)反转的字符串将其状态保留为有效的 UTF-8。

注意单元测试和模糊测试之间的语法差异:

(3)确保新包unicode/utf8已导入。

随着单元测试转换为模糊测试,是时候再次运行测试了。

a.在不进行模糊测试的情况下运行模糊测试,以确保种子输入通过。

如果您在该文件中有其他测试,您也可以运行go test -run=FuzzReverse,并且您只想运行模糊测试。

b.运行FuzzReverse模糊测试,查看是否有任何随机生成的字符串输入会导致失败。这是使用go test新标志-fuzz执行的。

模糊测试时发生故障,导致问题的输入被写入将在下次运行的种子语料库文件中go test,即使没有-fuzz标志也是如此。要查看导致失败的输入,请在文本编辑器中打开写入 testdata/fuzz/FuzzReverse 目录的语料库文件。您的种子语料库文件可能包含不同的字符串,但格式相同。

语料库文件的第一行表示编码版本。以下每一行代表构成语料库条目的每种类型的值。由于 fuzz target 只需要 1 个输入,因此版本之后只有 1 个值。

c.运行没有-fuzz标志的go test; 新的失败种子语料库条目将被使用:

由于我们的测试失败,是时候调试了。

golang连续生成随机数

const NUM int = 100

for i := 0; i NUM; i += 1 {

rand.Seed(int64(i))

fmt.Printf("%d\t", rand.Int63n(int64(NUM)))

}

其实在循环里面这点时间间隔,纳秒也是跟不上的。

还有,你用sleep的方法肯定是不能接受的!!!

golang连续生成随机数重复

package main

import (

"fmt"

"math/rand"

"time"

)

func main() {

for i := 0; i  20; i++ {

r := rand.New(rand.NewSource(time.Now().UnixNano()))

//rand.Seed(time.Now().UnixNano()) //以当前纳秒数作为随机数种子

n := r.Int63()

fmt.Println(n)

}

}

查了下这样可以

不知道他内部怎么实现的   unixnano

如何产生“随机”,但也“独一无二”的数字

1. 优先:如果数字是保证永不重复,这不是很随机的。 第二:有很多的PRNG算法。 更新: 第三:有一个IETF的RFC的UUID(什么MS调用的GUID),但你应该认识到,(U|G)的UID不加密保护,如果这是你的关注。 更新2: 如果你想喜欢这种在生产代码(不只是为自己的熏陶),请使用预先存在的库。这是代码的那种几乎保证有微妙的bugs,如果你之前(或者即使你有)从来没有做过。 更新3: 下面是文档的.NET的GUID

2. 有很多方法可以生成随机数。这是一个系统/库调用一个伪随机数发生器的seed照你已经描述。 但是 CodeGo.net,也有越来越随机数的其他方式涉及专门的硬件来获得真正的随机数。我知道扑克网站这种硬件的。这是非常有趣的阅读他们是如何做到这一点。

3. 大多数随机数发生器有办法“随机”重新初始化seed值。 (称为随机化)。 如果这是不可能的,你可以将系统时钟初始化seed。

4. 你这个代码示例: 或者,您这本书: 但是,不要自己动手,用现有的库。你不能成为优先人做到这一点。

5. 特别是关于Java的:java.util.Random使用线性同余发生器,这不是很好java.util.UUID#randomUUID()用途java.security.SecureRandom,适用于各种加密安全随机数据生成器的界面-默认是基于SHA-1的,我相信。 的UUID / GUID是不一定随机 人们很容易找到那些比好得多的RNG的java.util.Random如Mersenne扭曲或乘用携带

6. 我知道你正在寻找一种方法来生成随机的C#。如果是的话,RNGCryptoServiceProvider的是你在找什么。 [编辑] 如果产生一个相当长的RNGCryptoServiceProvider的数目,它很可能是唯一的,但不存在供货保证。从理论上讲,真正的随机数是唯一的。你滚骰子2,你可能会得到两个头的,但他们仍然是随机的。真正的随机! 我想申请的是unique的支票,你只需要保持滚动生成的数字历史你了。


当前文章:GO语言取得随机数,golang 随机字符串
网址分享:http://cqcxhl.com/article/dsehdhj.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP