重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

python多元函数优化,多元函数总结

多元函数的最优化问题 不知道如何求解

类似于求条件极值的拉格朗日法。不同的是:先让约束条件用小于等于不等式表示,且右边为0。用与朗格朗日法相同的方式构造出函数F=目标函数+lamda*约束条件左端。然对F的每个变量求偏导。再解方程组:lamda*Fi=0,其中Fi是F的各个一阶偏导。

网站设计、网站建设介绍好的网站是理念、设计和技术的结合。成都创新互联公司拥有的网站设计理念、多方位的设计风格、经验丰富的设计团队。提供PC端+手机端网站建设,用营销思维进行网站设计、采用先进技术开源代码、注重用户体验与SEO基础,将技术与创意整合到网站之中,以契合客户的方式做到创意性的视觉化效果。

优化Python编程的4个妙招

1. Pandas.apply() – 特征工程瑰宝

Pandas 库已经非常优化了,但是大部分人都没有发挥它的最大作用。想想它一般会用于数据科学项目中的哪些地方。一般首先能想到的就是特征工程,即用已有特征创造新特征。其中最高效的方法之一就是Pandas.apply(),即Pandas中的apply函数。

在Pandas.apply()中,可以传递用户定义功能并将其应用到Pandas Series的所有数据点中。这个函数是Pandas库最好的扩展功能之一,它能根据所需条件分隔数据。之后便能将其有效应用到数据处理任务中。

2. Pandas.DataFrame.loc – Python数据操作绝妙技巧

所有和数据处理打交道的数据科学家(差不多所有人了!)都应该学会这个方法。

很多时候,数据科学家需要根据一些条件更新数据集中某列的某些值。Pandas.DataFrame.loc就是此类问题最优的解决方法。

3. Python函数向量化

另一种解决缓慢循环的方法就是将函数向量化。这意味着新建函数会应用于输入列表,并返回结果数组。在Python中使用向量化能至少迭代两次,从而加速计算。

事实上,这样不仅能加速代码运算,还能让代码更加简洁清晰。

4. Python多重处理

多重处理能使系统同时支持一个以上的处理器。

此处将数据处理分成多个任务,让它们各自独立运行。处理庞大的数据集时,即使是apply函数也显得有些迟缓。

关于优化Python编程的4个妙招,青藤小编就和您分享到这里了。如果您对python编程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于python编程的技巧及素材等内容,可以点击本站的其他文章进行学习。

Python怎么做最优化

一、概观scipy中的optimize子包中提供了常用的最优化算法函数实现。我们可以直接调用这些函数完成我们的优化问题。optimize中函数最典型的特点就是能够从函数名称上看出是使用了什么算法。下面optimize包中函数的概览:1.非线性最优化fmin -- 简单Nelder-Mead算法fmin_powell -- 改进型Powell法fmin_bfgs -- 拟Newton法fmin_cg -- 非线性共轭梯度法fmin_ncg -- 线性搜索Newton共轭梯度法leastsq -- 最小二乘2.有约束的多元函数问题fmin_l_bfgs_b ---使用L-BFGS-B算法fmin_tnc ---梯度信息fmin_cobyla ---线性逼近fmin_slsqp ---序列最小二乘法nnls ---解|| Ax - b ||_2 for x=03.全局优化anneal ---模拟退火算法brute --强力法4.标量函数fminboundbrentgoldenbracket5.拟合curve_fit-- 使用非线性最小二乘法拟合6.标量函数求根brentq ---classic Brent (1973)brenth ---A variation on the classic Brent(1980)ridder ---Ridder是提出这个算法的人名bisect ---二分法newton ---牛顿法fixed_point7.多维函数求根fsolve ---通用broyden1 ---Broyden’s first Jacobian approximation.broyden2 ---Broyden’s second Jacobian approximationnewton_krylov ---Krylov approximation for inverse Jacobiananderson ---extended Anderson mixingexcitingmixing ---tuned diagonal Jacobian approximationlinearmixing ---scalar Jacobian approximationdiagbroyden ---diagonal Broyden Jacobian approximation8.实用函数line_search ---找到满足强Wolfe的alpha值check_grad ---通过和前向有限差分逼近比较检查梯度函数的正确性二、实战非线性最优化fmin完整的调用形式是:fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp=1, retall=0, callback=None)不过我们最常使用的就是前两个参数。一个描述优化问题的函数以及初值。后面的那些参数我们也很容易理解。如果您能用到,请自己研究。下面研究一个最简单的问题,来感受这个函数的使用方法:f(x)=x**2-4*x+8,我们知道,这个函数的最小值是4,在x=2的时候取到。from scipy.optimize import fmin #引入优化包def myfunc(x):return x**2-4*x+8 #定义函数x0 = [1.3] #猜一个初值xopt = fmin(myfunc, x0) #求解print xopt #打印结果运行之后,给出的结果是:Optimization terminated successfully.Current function value: 4.000000Iterations: 16Function evaluations: 32[ 2.00001953]程序准确的计算得出了最小值,不过最小值点并不是严格的2,这应该是由二进制机器编码误差造成的。除了fmin_ncg必须提供梯度信息外,其他几个函数的调用大同小异,完全类似。我们不妨做一个对比:from scipy.optimize import fmin,fmin_powell,fmin_bfgs,fmin_cgdef myfunc(x):return x**2-4*x+8x0 = [1.3]xopt1 = fmin(myfunc, x0)print xopt1printxopt2 = fmin_powell(myfunc, x0)print xopt2printxopt3 = fmin_bfgs(myfunc, x0)print xopt3printxopt4 = fmin_cg(myfunc,x0)print xopt4给出的结果是:Optimization terminated successfully.Current function value: 4.000000Iterations: 16Function evaluations: 32[ 2.00001953]Optimization terminated successfully.Current function value: 4.000000Iterations: 2Function evaluations: 531.99999999997Optimization terminated successfully.Current function value: 4.000000Iterations: 2Function evaluations: 12Gradient evaluations: 4[ 2.00000001]Optimization terminated successfully.Current function value: 4.000000Iterations: 2Function evaluations: 15Gradient evaluations: 5[ 2.]我们可以根据给出的消息直观的判断算法的执行情况。每一种算法数学上的问题,请自己看书学习。个人感觉,如果不是纯研究数学的工作,没必要搞清楚那些推导以及定理云云。不过,必须了解每一种算法的优劣以及能力所及。在使用的时候,不妨多种算法都使用一下,看看效果分别如何,同时,还可以互相印证算法失效的问题。在from scipy.optimize import fmin之后,就可以使用help(fmin)来查看fmin的帮助信息了。帮助信息中没有例子,但是给出了每一个参数的含义说明,这是调用函数时候的最有价值参考。有源码研究癖好的,或者当你需要改进这些已经实现的算法的时候,可能需要查看optimize中的每种算法的源代码。在这里:https:/ / github. com/scipy/scipy/blob/master/scipy/optimize/optimize.py聪明的你肯定发现了,顺着这个链接往上一级、再往上一级,你会找到scipy的几乎所有源码!

这段python代码如何优化?

第一:不需要定义main函数,直接写就好。

第二:代码的逻辑也是有问题的。一般来说,按这样的框架去写:

_size, _verbs, A, s = [int(_) for _ in imput().split(' ')], [], ''

for _ in range(_size): A.append(...) # 读入矩阵所有行

def G:

....实现特征函数G

for _ in range(_verbs):

....verb = [int(_) for _ in imput().split(' ')]

.... if verb[0] = 1:

........行翻转

....elif verb[0] = 2:

........列翻转

....else:

........s += G()

print(s)

#Python干货#python实现——最优化算法

函数详见rres,此代码使该算法运行了两次

收获:

这是我第一个实现的代码。学习完该算法以后,逻辑框架基本上就有了,剩下需要明确的就是对应的python的语言。于是我就开始了查找“如何定义函数”(详见mofan的优酷),“循环体”和“if条件语句”的格式()“数学符号”(详见mofan的优酷),以及print的使用

1.def是python中指定义,一般用来定义函数,如果需要深度学习搭建网络可用来定义网络。值得注意的一点是

我不清楚为什么,但是如果没有加的话,那个函数公式就是一个花瓶,就像一个结果输不出去。

2.最坑的就是逻辑。一开始逻辑没理清楚,或者说在代码上有疏漏,导致我将left和right放在了循环体里,结果可想而知。不过也是因为这个错误,我知道pycharm中的debug怎么用,挺简单的,百度一下就出来了。

3.不知道什么原因,看的莫烦视频中的print多个变量一起输出是没有办法在我的pycharm中使用的,出来的结果很奇怪。可能是因为我是win10不是ios吧。print如果多个变量一起输出必须是print("名字:%s,名字2:%s"%(a,b))结果输出就是名字:a ,名字2:b

关于python中数据变量。第一遍运行结果出现很明显不对,于是我采用了debug。结果发现,mid1处一直为1而不是1.5,于是就开始了解数据变量。起初我猜测python默认所有变量为整型,但是根据二分法的结果我意识到此猜测不对,所以要改整个file的变量格式没有必要。所以我就在mid1式子前面加了一个float,结果就显示为1.5了。但是如果我将整个式子用()括起来,前面加float,结果还是1。我不太理解为什么。不过我知道了python的数据格式是根据输入量决定的,也就是说你的输入量如果是整型,那么与其直接相关的计算输出结果一定是整型,而且还是不采用进位的整型。在我没有采用+float/+.0这两种方法之前,mid1~3全部是整型。

或者不再mid1前面加float,直接将输入量后面点个点就行

真的很想吐槽一下print,好麻烦啊啊啊啊每次都得弄个%s,而且有时候还不能放一起!!!!

不要问我掌握了什么,要问我现在写完这个代码后有多么的爱python的精度表示 :-)我决定以后只要再编写数学公式的代码都将输入量的小数学点后面补很多0

fibonacci函数定义,每次debug后我的手都是抖的O( _ )O~

不知道自己什么时候有的强迫症,只要是代码下面有“~”我就必须要消掉。笑哭。这个很简单,前四个除了费波纳茨,都很简单。

这个公式看起来很麻烦,便写的时候更要谨慎。我上回把那个2搁在了分号下面,结果很大,所以还是换算成0.5更好(PS:勿忘那长河般的0)。

虽然代码很长,但是主要是因为print太多。本打算在开头print,最后结果会漏掉最后一部分。懒得想其他办法了,直接就这样吧

一开始while里面写成了,导致run不出来。继而,debug也没法用。在网上一查才知道 “没联网”+“没选断点”。最后想尝试将else里面的内容输出来,结果发现run以后被刷屏了。于是改成i7以后还是不行,于是想着加一个break跳出循环,结果成效了。

然后刚刚由debug了一下,才知道原来是i+1在if里面,因为没有办法+1,所以i=6一直存在,就不断循环。因为加break也好,i+1也好,都可以。

这是我第一组自己实现的python代码,就是数学公式用python语言组装起来。刚开始的时候知道大概需要在语言中体现什么,但不太清楚。于是我就在网上找了几个二分法的,他们都各有不同,但框架都差不多,不过如果要用到我们的那个公式里还需要改变很多。然后我就开始分析我们的题,我发现大体需要两部分,一部分函数定义,一部分循环体。但我不知道如何定义函数,如何写数学公式,如何弄变量,也就是说一些小点不太会,所以我选择直接百度。因为我知道自己阅读的能力不错,相比于从视频中提取要素,我更擅长通过阅读获得要点。有目的性地找知识点,掌握地更牢固。

于是我就开始了第一个——二分法的编写。我发现,自己出现了很多错误而且有很多地方都很基础。但我依然没选择视频,而是将这些问题直接在百度上找,因为视频讲完或许你也没找到点。当然,这是一步一步走的,不是直接就将程序摆上去,一点一点改。

随着前两个的成功,我发现自己对于这些代码有了自信,似乎看透了他们的伪装,抓住了本质。除此之外,我还意识到自己自从8月份以后,学习能力似乎提高了不少,而且有了更为有效的学习方法。各方面都有了一定的觉醒。除了第一个找了几个牛头不对马嘴的代码,其他都是根据自己的逻辑写,逻辑通下来以后,对应语言中某一部分不知道如何翻译就去百度,其实这几个套路都一样或者说数学公式转化的套路都一样。

我还意识到,汇编其实是最难的语言,目前为止所学到的,因为很多都需要自己去定义,去死抠,需要记住大量的指令且不能灵活变通。但是其他的却只需要将一些对应的记下来就好。python真的挺简单的。而且,我发现自己今天似乎打开了新世界的大门,我爱上了这种充满了灵性的东西,充满了严谨的美丽,还有那未知的变化,我发现我似乎爱上了代码。可能不仅仅局限于python,这些语言都充满了挑战性。我觉得当你疑惑的时候,就需要相信直觉,至少我发现它很准


本文名称:python多元函数优化,多元函数总结
标题来源:http://cqcxhl.com/article/dsgjcio.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP