重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
1、首先打开pycharm软件,新建一个python文件并导入numpy库。
创新互联建站主打移动网站、成都网站制作、做网站、外贸营销网站建设、网站改版、网络推广、网站维护、域名申请、等互联网信息服务,为各行业提供服务。在技术实力的保障下,我们为客户承诺稳定,放心的服务,根据网站的内容与功能再决定采用什么样的设计。最后,要实现符合网站需求的内容、功能与设计,我们还会规划稳定安全的技术方案做保障。
2、然后创建矩阵A,这里先创建一个两行两列的数组,在用numpy的mat函数将数组转换为矩阵。
3、接着计算矩阵A的逆矩阵,逆矩阵是通过A.I求得。
4、求出了矩阵A的逆矩阵后,用矩阵B乘以这个逆矩阵就是矩阵的除法了,即为矩阵B除以矩阵A的值。
python中读取mat文件
在python中可以使用scipy.io中的函数loadmat()读取mat文件,函数savemat保存文件。
1、读取文件
如上例:
1234567
#coding:UTF-8 import scipy.io as scio dataFile = 'E://data.mat'data = scio.loadmat(dataFile)
注意,读取出来的data是字典格式,可以通过函数type(data)查看。
1
print type(data)
结果显示
1
type 'dict'
找到mat文件中的矩阵:
1
print data['A']
结果显示
[[ 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
。。。。。。。。。。。
0. 0. 0. 0. 0. 0. 0.
0.36470588 0.90196078 0.99215686 0.99607843 0.99215686 0.99215686
0.78431373 0.0627451 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
。。。。。。。。。。。。
0.94117647 0.22745098 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.30196078
。。。。。。。
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. ]]
格式为:
type 'numpy.ndarray'
即为numpy中的矩阵格式。
一、mat文件
mat数据格式是Matlab的数据存储的标准格式。在Matlab中主要使用load()函数导入一个mat文件,使用save()函数保存一个mat文件。对于文件
load('data.mat')
save('data_1.mat','A')
其中,'A'表示要保存的内容。
二、python中读取mat文件
在python中可以使用scipy.io中的函数loadmat()读取mat文件,函数savemat保存文件。
1、读取文件
如上例:
#coding:UTF-8
import scipy.io as scio
dataFile = 'E://data.mat'
data = scio.loadmat(dataFile)
注意,读取出来的data是字典格式,可以通过函数type(data)查看。
print type(data)
结果显示
type 'dict'
找到mat文件中的矩阵:
print data['A']
结果显示
[[ 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
。。。。。。。。。。。
0. 0. 0. 0. 0. 0. 0.
0.36470588 0.90196078 0.99215686 0.99607843 0.99215686 0.99215686
0.78431373 0.0627451 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
。。。。。。。。。。。。
0.94117647 0.22745098 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.30196078
。。。。。。。
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. ]]
格式为:
type 'numpy.ndarray'
即为numpy中的矩阵格式。
2、保存文件
将这里的data['A']矩阵重新保存到一个新的文件dataNew.mat中:
dataNew = 'E://dataNew.mat'
scio.savemat(dataNew, {'A':data['A']})
前言
今天拿到一个传感器信号文件,txt格式,有十几行,每行是一组json格式数据,有两个字段(键):'series'和'id',共4个json对象,id从'901'到'904',其中每组的series是是个数组,数组中包含512个json对象,每个json对象含有两个字段:'time'和'value'。
图1 原始文件
解析
MATLAB本身无直接解析json数据的函数,我从MATLAB官网论坛File Exchange上找到两个解析json的第三方函数:json4mat和parse_json。这两个函数均能成功解析json格式数据到MATLAB支持的cell和struct类型数据。
下载地址:;query=jsonterm=json
发现json4mat比parse_json的解析速度更快。
示例
以json4mat为例,
3 %% 解析
4 clear;clc;
5 file = 'C:\Users\Administrator\Desktop\06\zlw\AccData-18-29-43.txt';
6 A = importdata(file);
7 M = [];
8 for i = 1:numel(A)
9 M=[M;json2mat(A{i})];
10 end %方法1,json2mat函数
11
12 % for i = 1:numel(A)
13 % tmp = parse_json(A{i});
14 % M = [M;tmp{1}];
15 % end %方法2,parse_json函数
结果
解析后得到的16*4的cell格式数据,里面每个元素是结构体struct数据。每个结构体有两个字段:series和id。可供MATLAB进行处理。
图2 解析后的数据