重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

mysql怎么优化最快,如何做mysql性能优化

Mysql某个表有近千万数据,CRUD比较慢,如何优化?

数据千万级别之多,占用的存储空间也比较大,可想而知它不会存储在一块连续的物理空间上,而是链式存储在多个碎片的物理空间上。可能对于长字符串的比较,就用更多的时间查找与比较,这就导致用更多的时间。

为泰州等地区用户提供了全套网页设计制作服务,及泰州网站建设行业解决方案。主营业务为网站设计制作、成都做网站、泰州网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!

可以做表拆分,减少单表字段数量,优化表结构。

在保证主键有效的情况下,检查主键索引的字段顺序,使得查询语句中条件的字段顺序和主键索引的字段顺序保持一致。

主要两种拆分 垂直拆分,水平拆分。

垂直分表

也就是“大表拆小表”,基于列字段进行的。一般是表中的字段较多,将不常用的, 数据较大,长度较长(比如text类型字段)的拆分到“扩展表“。 一般是针对 那种 几百列的大表,也避免查询时,数据量太大造成的“跨页”问题。

垂直分库针对的是一个系统中的不同业务进行拆分,比如用户User一个库,商品Product一个库,订单Order一个库。 切分后,要放在多个服务器上,而不是一个服务器上。为什么? 我们想象一下,一个购物网站对外提供服务,会有用户,商品,订单等的CRUD。没拆分之前, 全部都是落到单一的库上的,这会让数据库的单库处理能力成为瓶颈。按垂直分库后,如果还是放在一个数据库服务器上, 随着用户量增大,这会让单个数据库的处理能力成为瓶颈,还有单个服务器的磁盘空间,内存,tps等非常吃紧。 所以我们要拆分到多个服务器上,这样上面的问题都解决了,以后也不会面对单机资源问题。

数据库业务层面的拆分,和服务的“治理”,“降级”机制类似,也能对不同业务的数据分别的进行管理,维护,监控,扩展等。 数据库往往最容易成为应用系统的瓶颈,而数据库本身属于“有状态”的,相对于Web和应用服务器来讲,是比较难实现“横向扩展”的。 数据库的连接资源比较宝贵且单机处理能力也有限,在高并发场景下,垂直分库一定程度上能够突破IO、连接数及单机硬件资源的瓶颈。

水平分表

针对数据量巨大的单张表(比如订单表),按照某种规则(RANGE,HASH取模等),切分到多张表里面去。 但是这些表还是在同一个库中,所以库级别的数据库操作还是有IO瓶颈。不建议采用。

水平分库分表

将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同。 水平分库分表能够有效的缓解单机和单库的性能瓶颈和压力,突破IO、连接数、硬件资源等的瓶颈。

水平分库分表切分规则

1. RANGE

从0到10000一个表,10001到20000一个表;

2. HASH取模

一个商场系统,一般都是将用户,订单作为主表,然后将和它们相关的作为附表,这样不会造成跨库事务之类的问题。 取用户id,然后hash取模,分配到不同的数据库上。

3. 地理区域

比如按照华东,华南,华北这样来区分业务,七牛云应该就是如此。

4. 时间

按照时间切分,就是将6个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据 被查询的概率变小,所以没必要和“热数据”放在一起,这个也是“冷热数据分离”。

分库分表后面临的问题

事务支持

分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。

跨库join

只要是进行切分,跨节点Join的问题是不可避免的。但是良好的设计和切分却可以减少此类情况的发生。解决这一问题的普遍做法是分两次查询实现。在第一次查询的结果集中找出关联数据的id,根据这些id发起第二次请求得到关联数据。

跨节点的count,order by,group by以及聚合函数问题

这些是一类问题,因为它们都需要基于全部数据集合进行计算。多数的代理都不会自动处理合并工作。解决方案:与解决跨节点join问题的类似,分别在各个节点上得到结果后在应用程序端进行合并。和join不同的是每个结点的查询可以并行执行,因此很多时候它的速度要比单一大表快很多。但如果结果集很大,对应用程序内存的消耗是一个问题。

数据迁移,容量规划,扩容等问题

来自淘宝综合业务平台团队,它利用对2的倍数取余具有向前兼容的特性(如对4取余得1的数对2取余也是1)来分配数据,避免了行级别的数据迁移,但是依然需要进行表级别的迁移,同时对扩容规模和分表数量都有限制。总得来说,这些方案都不是十分的理想,多多少少都存在一些缺点,这也从一个侧面反映出了Sharding扩容的难度。

ID问题

一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制。一方面,某个分区数据库自生成的ID无法保证在全局上是唯一的;另一方面,应用程序在插入数据之前需要先获得ID,以便进行SQL路由.

一些常见的主键生成策略

UUID

使用UUID作主键是最简单的方案,但是缺点也是非常明显的。由于UUID非常的长,除占用大量存储空间外,最主要的问题是在索引上,在建立索引和基于索引进行查询时都存在性能问题。

Twitter的分布式自增ID算法Snowflake

在分布式系统中,需要生成全局UID的场合还是比较多的,twitter的snowflake解决了这种需求,实现也还是很简单的,除去配置信息,核心代码就是毫秒级时间41位 机器ID 10位 毫秒内序列12位。

跨分片的排序分页

一般来讲,分页时需要按照指定字段进行排序。当排序字段就是分片字段的时候,我们通过分片规则可以比较容易定位到指定的分片,而当排序字段非分片字段的时候,情况就会变得比较复杂了。为了最终结果的准确性,我们需要在不同的分片节点中将数据进行排序并返回,并将不同分片返回的结果集进行汇总和再次排序,最后再返回给用户。

mysql最好的优化技巧

1、选取最适用的字段属性

MySQL 可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很好的完成任务了。同样的,如果可以的话,我们应该使用MEDIUMINT而不是BIGIN来定义整型字段。

另外一个提高效率的方法是在可能的情况下,应该尽量把字段设置为NOT NULL,这样在将来执行查询的时候,数据库不用去比较NULL值。

对于某些文本字段,例如“省份”或者“性别”,我们可以将它们定义为ENUM类型。因为在MySQL中,ENUM类型被当作数值型数据来处理,而数值型数据被处理起来的速度要比文本类型快得多。这样,我们又可以提高数据库的性能。

2、使用连接(JOIN)来代替子查询(Sub-Queries)

MySQL 从4.1开始支持SQL的子查询。这个技术可以使用SELECT语句来创建一个单列的查询结果,然后把这个结果作为过滤条件用在另一个查询中。例如,我们要将客户基本信息表中没有任何订单的客户删除掉,就可以利用子查询先从销售信息表中将所有发出订单的客户ID取出来,然后将结果传递给主查询,如下所示:

DELETE FROM customerinfo

WHERE CustomerID NOT in (SELECT CustomerID FROM salesinfo )

使用子查询可以一次性的完成很多逻辑上需要多个步骤才能完成的SQL操作,同时也可以避免事务或者表锁死,并且写起来也很容易。但是,有些情况下,子查询可以被更有效率的连接(JOIN).. 替代。例如,假设我们要将所有没有订单记录的用户取出来,可以用下面这个查询完成:

SELECT * FROM customerinfo

WHERE CustomerID NOT in (SELECT CustomerID FROM salesinfo )

如果使用连接(JOIN).. 来完成这个查询工作,速度将会快很多。尤其是当salesinfo表中对CustomerID建有索引的话,性能将会更好,查询如下:

SELECT * FROM customerinfo

LEFT JOIN salesinfoON customerinfo.CustomerID=salesinfo.

CustomerID

WHERE salesinfo.CustomerID IS NULL

连接(JOIN).. 之所以更有效率一些,是因为 MySQL不需要在内存中创建临时表来完成这个逻辑上的需要两个步骤的查询工作。

3、使用联合(UNION)来代替手动创建的临时表

MySQL 从 4.0 的版本开始支持 UNION 查询,它可以把需要使用临时表的两条或更多的 SELECT 查询合并的一个查询中。在客户端的查询会话结束的时候,临时表会被自动删除,从而保证数据库整齐、高效。使用 UNION 来创建查询的时候,我们只需要用 UNION作为关键字把多个 SELECT 语句连接起来就可以了,要注意的是所有 SELECT 语句中的字段数目要想同。下面的例子就演示了一个使用 UNION的查询。

SELECT Name, Phone FROM client

UNION

SELECT Name, BirthDate FROM author

UNION

SELECT Name, Supplier FROM product

4、事务

尽管我们可以使用子查询(Sub-Queries)、连接(JOIN)和联合(UNION)来创建各种各样的查询,但不是所有的数据库操作都可以只用一条或少数几条SQL语句就可以完成的。更多的时候是需要用到一系列的语句来完成某种工作。但是在这种情况下,当这个语句块中的某一条语句运行出错的时候,整个语句块的操作就会变得不确定起来。设想一下,要把某个数据同时插入两个相关联的表中,可能会出现这样的情况:第一个表中成功更新后,数据库突然出现意外状况,造成第二个表中的操作没有完成,这样,就会造成数据的不完整,甚至会破坏数据库中的数据。要避免这种情况,就应该使用事务,它的作用是:要么语句块中每条语句都操作成功,要么都失败。换句话说,就是可以保持数据库中数据的一致性和完整性。事物以BEGIN 关键字开始,COMMIT关键字结束。在这之间的一条SQL操作失败,那么,ROLLBACK命令就可以把数据库恢复到BEGIN开始之前的状态。

BEGIN;

INSERT INTO salesinfo SET CustomerID=14;

UPDATE inventory SET Quantity=11

WHERE item='book';

COMMIT;

事务的另一个重要作用是当多个用户同时使用相同的数据源时,它可以利用锁定数据库的方法来为用户提供一种安全的访问方式,这样可以保证用户的操作不被其它的用户所干扰。

5、锁定表

尽管事务是维护数据库完整性的一个非常好的方法,但却因为它的独占性,有时会影响数据库的性能,尤其是在很大的应用系统中。由于在事务执行的过程中,数据库将会被锁定,因此其它的用户请求只能暂时等待直到该事务结束。如果一个数据库系统只有少数几个用户

来使用,事务造成的影响不会成为一个太大的问题;但假设有成千上万的用户同时访问一个数据库系统,例如访问一个电子商务网站,就会产生比较严重的响应延迟。

其实,有些情况下我们可以通过锁定表的方法来获得更好的性能。下面的例子就用锁定表的方法来完成前面一个例子中事务的功能。

LOCK TABLE inventory WRITE

SELECT Quantity FROM inventory

WHEREItem='book';

...

UPDATE inventory SET Quantity=11

WHEREItem='book';

UNLOCK TABLES

这里,我们用一个 SELECT 语句取出初始数据,通过一些计算,用 UPDATE 语句将新值更新到表中。包含有 WRITE 关键字的 LOCK TABLE 语句可以保证在 UNLOCK TABLES 命令被执行之前,不会有其它的访问来对 inventory 进行插入、更新或者删除的操作。

6、使用外键

锁定表的方法可以维护数据的完整性,但是它却不能保证数据的关联性。这个时候我们就可以使用外键。例如,外键可以保证每一条销售记录都指向某一个存在的客户。在这里,外键可以把customerinfo 表中的CustomerID映射到salesinfo表中CustomerID,任何一条没有合法CustomerID的记录都不会被更新或插入到 salesinfo中。

CREATE TABLE customerinfo

(

CustomerID INT NOT NULL ,

PRIMARY KEY ( CustomerID )

) TYPE = INNODB;

CREATE TABLE salesinfo

(

SalesID INT NOT NULL,

CustomerID INT NOT NULL,

PRIMARY KEY(CustomerID, SalesID),

FOREIGN KEY (CustomerID) REFERENCES customerinfo

(CustomerID) ON DELETECASCADE

) TYPE = INNODB;

注意例子中的参数“ON DELETE CASCADE”。该参数保证当 customerinfo 表中的一条客户记录被删除的时候,salesinfo 表中所有与该客户相关的记录也会被自动删除。如果要在 MySQL 中使用外键,一定要记住在创建表的时候将表的类型定义为事务安全表 InnoDB类型。该类型不是 MySQL 表的默认类型。定义的方法是在 CREATE TABLE 语句中加上 TYPE=INNODB。如例中所示。

7、使用索引

索引是提高数据库性能的常用方法,它可以令数据库服务器以比没有索引快得多的速度检索特定的行,尤其是在查询语句当中包含有MAX(), MIN()和ORDERBY这些命令的时候,性能提高更为明显。那该对哪些字段建立索引呢?一般说来,索引应建立在那些将用于JOIN, WHERE判断和ORDER BY排序的字段上。尽量不要对数据库中某个含有大量重复的值的字段建立索引。对于一个ENUM类型的字段来说,出现大量重复值是很有可能的情况,例如 customerinfo中的“province”.. 字段,在这样的字段上建立索引将不会有什么帮助;相反,还有可能降低数据库的性能。我们在创建表的时候可以同时创建合适的索引,也可以使用ALTER TABLE或CREATE INDEX在以后创建索引。此外,MySQL

从版本3.23.23开始支持全文索引和搜索。全文索引在 MySQL 中是一个FULLTEXT类型索引,但仅能用于MyISAM 类型的表。对于一个大的数据库,将数据装载到一个没有FULLTEXT索引的表中,然后再使用ALTER TABLE或CREATE INDEX创建索引,将是非常快的。但如果将数据装载到一个已经有FULLTEXT索引的表中,执行过程将会非常慢。

8、优化的查询语句

绝大多数情况下,使用索引可以提高查询的速度,但如果SQL语句使用不恰当的话,索引将无法发挥它应有的作用。下面是应该注意的几个方面。首先,最好是在相同类型的字段间进行比较的操作。在MySQL 3.23版之前,这甚至是一个必须的条件。例如不能将一个建有索引的INT字段和BIGINT字段进行比较;但是作为特殊的情况,在CHAR类型的字段和 VARCHAR类型字段的字段大小相同的时候,可以将它们进行比较。其次,在建有索引的字段上尽量不要使用函数进行操作。

例如,在一个DATE类型的字段上使用YEAE()函数时,将会使索引不能发挥应有的作用。所以,下面的两个查询虽然返回的结果一样,但后者要比前者快得多。

SELECT * FROM order WHERE YEAR(OrderDate)2001;

SELECT * FROM order WHERE OrderDate"2001-01-01";

同样的情形也会发生在对数值型字段进行计算的时候:

SELECT * FROM inventory WHERE Amount/724;

SELECT * FROM inventory WHERE Amount24*7;

上面的两个查询也是返回相同的结果,但后面的查询将比前面的一个快很多。第三,在搜索字符型字段时,我们有时会使用 LIKE 关键字和通配符,这种做法虽然简单,但却也是以牺牲系统性能为代价的。例如下面的查询将会比较表中的每一条记录。

SELECT * FROM books

WHERE name like "MySQL%"

但是如果换用下面的查询,返回的结果一样,但速度就要快上很多:

SELECT * FROM books

WHERE name="MySQL"and name"MySQM"

最后,应该注意避免在查询中让MySQL进行自动类型转换,因为转换过程也会使索引变得不起作用。

mysql如何优化以下语句,查询耗时太久了?

根据所描述的问题,可尝试在mms_profitcenter 的FOrderID ,FSuffix列上建立索引,再查询试试。 下面提供30种mysql常用优化方法供参考:

1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

2.应尽量避免在 where 子句中使用!=或操作符,否则将引擎放弃使用索引而进行全表扫描。

3.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num is null

可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:

select id from t where num=0

4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num=10 or num=20

可以这样查询:

select id from t where num=10

union all

select id from t where num=20

5.下面的查询也将导致全表扫描:

select id from t where name like '%abc%'

若要提高效率,可以考虑全文检索。

6.in 和 not in 也要慎用,否则会导致全表扫描,如:

select id from t where num in(1,2,3)

对于连续的数值,能用 between 就不要用 in 了:

select id from t where num between 1 and 3

7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:

select id from t where num=@num

可以改为强制查询使用索引:

select id from t with(index(索引名)) where num=@num

8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where num/2=100

应改为:

select id from t where num=100*2

9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where substring(name,1,3)='abc'--name以abc开头的id

select id from t where datediff(day,createdate,'2005-11-30')=0--'2005-11-30'生成的id

应改为:

select id from t where name like 'abc%'

select id from t where createdate='2005-11-30' and createdate'2005-12-1'

10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。

12.不要写一些没有意义的查询,如需要生成一个空表结构:

select col1,col2 into #t from t where 1=0

这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:

create table #t(...)

13.很多时候用 exists 代替 in 是一个好的选择:

select num from a where num in(select num from b)

用下面的语句替换:

select num from a where exists(select 1 from b where num=a.num)

14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

15.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。

16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

18.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

21.避免频繁创建和删除临时表,以减少系统表资源的消耗。

22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。

23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。

27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。

29.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

30.尽量避免大事务操作,提高系统并发能力。

MySQL数据库性能优化有哪些技巧?

1.存储引擎的选择如果数据表需要事务处理,应该考虑使用InnoDB,因为它完全符合ACID特性。如果不需要事务处理,使用默认存储引擎MyISAM是比较明智的。并且不要尝试同时使用这两个存储引擎。思考一下:在一个事务处理中,一些数据表使用InnoDB,而其余的使用MyISAM.结果呢?整个subject将被取消,只有那些在事务处理中的被带回到原始状态,其余的被提交的数据转存,这将导致整个数据库的冲突。然而存在一个简单的方法可以同时利用两个存储引擎的优势。目前大多数MySQL套件中包括InnoDB、编译器和链表,但如果你选择MyISAM,你仍然可以单独下载InnoDB,并把它作为一个插件。很简单的方法,不是吗?

2.计数问题如果数据表采用的存储引擎支持事务处理(如InnoDB),你就不应使用COUNT(*)计算数据表中的行数。这是因为在产品类数据库使用COUNT(*),最多返回一个近似值,因为在某个特定时间,总有一些事务处理正在运行。如果使用COUNT(*)显然会产生bug,出现这种错误结果。

3.反复测试查询查询最棘手的问题并不是无论怎样小心总会出现错误,并导致bug出现。恰恰相反,问题是在大多数情况下bug出现时,应用程序或数据库已经上线。的确不存在针对该问题切实可行的解决方法,除非将测试样本在应用程序或数据库上运行。任何数据库查询只有经过上千个记录的大量样本测试,才能被认可。

4.避免全表扫描通常情况下,如果MySQL(或者其他关系数据库模型)需要在数据表中搜索或扫描任意特定记录时,就会用到全表扫描。此外,通常最简单的方法是使用索引表,以解决全表扫描引起的低效能问题。然而,正如我们在随后的问题中看到的,这存在错误部分。

5.使用“EXPLAIN”进行查询当需要调试时,EXPLAIN是一个很好的命令,下面将对EXPLAIN进行深入探讨。

mysql 有哪些常见的优化策略

在开始演示之前,我们先介绍下两个概念。

概念一,数据的可选择性基数,也就是常说的cardinality值。

查询优化器在生成各种执行计划之前,得先从统计信息中取得相关数据,这样才能估算每步操作所涉及到的记录数,而这个相关数据就是cardinality。简单来说,就是每个值在每个字段中的唯一值分布状态。

比如表t1有100行记录,其中一列为f1。f1中唯一值的个数可以是100个,也可以是1个,当然也可以是1到100之间的任何一个数字。这里唯一值越的多少,就是这个列的可选择基数。

那看到这里我们就明白了,为什么要在基数高的字段上建立索引,而基数低的的字段建立索引反而没有全表扫描来的快。当然这个只是一方面,至于更深入的探讨就不在我这篇探讨的范围了。

概念二,关于HINT的使用。

这里我来说下HINT是什么,在什么时候用。

HINT简单来说就是在某些特定的场景下人工协助MySQL优化器的工作,使她生成最优的执行计划。一般来说,优化器的执行计划都是最优化的,不过在某些特定场景下,执行计划可能不是最优化。

比如:表t1经过大量的频繁更新操作,(UPDATE,DELETE,INSERT),cardinality已经很不准确了,这时候刚好执行了一条SQL,那么有可能这条SQL的执行计划就不是最优的。为什么说有可能呢?

来看下具体演示

譬如,以下两条SQL,

A:

select * from t1 where f1 = 20;

B:

select * from t1 where f1 = 30;

如果f1的值刚好频繁更新的值为30,并且没有达到MySQL自动更新cardinality值的临界值或者说用户设置了手动更新又或者用户减少了sample page等等,那么对这两条语句来说,可能不准确的就是B了。

这里顺带说下,MySQL提供了自动更新和手动更新表cardinality值的方法,因篇幅有限,需要的可以查阅手册。

那回到正题上,MySQL 8.0 带来了几个HINT,我今天就举个index_merge的例子。

示例表结构:

mysql desc t1;+------------+--------------+------+-----+---------+----------------+| Field      | Type         | Null | Key | Default | Extra          |+------------+--------------+------+-----+---------+----------------+| id         | int(11)      | NO   | PRI | NULL    | auto_increment || rank1      | int(11)      | YES  | MUL | NULL    |                || rank2      | int(11)      | YES  | MUL | NULL    |                || log_time   | datetime     | YES  | MUL | NULL    |                || prefix_uid | varchar(100) | YES  |     | NULL    |                || desc1      | text         | YES  |     | NULL    |                || rank3      | int(11)      | YES  | MUL | NULL    |                |+------------+--------------+------+-----+---------+----------------+7 rows in set (0.00 sec)

表记录数:

mysql select count(*) from t1;+----------+| count(*) |+----------+|    32768 |+----------+1 row in set (0.01 sec)

这里我们两条经典的SQL:

SQL C:

select * from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;

SQL D:

select * from t1 where rank1 =100  and rank2 =100  and rank3 =100;

表t1实际上在rank1,rank2,rank3三列上分别有一个二级索引。

那我们来看SQL C的查询计划。

显然,没有用到任何索引,扫描的行数为32034,cost为3243.65。

mysql explain  format=json select * from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "3243.65"    },    "table": {      "table_name": "t1",      "access_type": "ALL",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "rows_examined_per_scan": 32034,      "rows_produced_per_join": 115,      "filtered": "0.36",      "cost_info": {        "read_cost": "3232.07",        "eval_cost": "11.58",        "prefix_cost": "3243.65",        "data_read_per_join": "49K"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"    }  }}1 row in set, 1 warning (0.00 sec)

我们加上hint给相同的查询,再次看看查询计划。

这个时候用到了index_merge,union了三个列。扫描的行数为1103,cost为441.09,明显比之前的快了好几倍。

mysql explain  format=json select /*+ index_merge(t1) */ * from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "441.09"    },    "table": {      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "union(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1103,      "rows_produced_per_join": 1103,      "filtered": "100.00",      "cost_info": {        "read_cost": "330.79",        "eval_cost": "110.30",        "prefix_cost": "441.09",        "data_read_per_join": "473K"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"    }  }}1 row in set, 1 warning (0.00 sec)

我们再看下SQL D的计划:

不加HINT,

mysql explain format=json select * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "534.34"    },    "table": {      "table_name": "t1",      "access_type": "ref",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "idx_rank1",      "used_key_parts": [        "rank1"      ],      "key_length": "5",      "ref": [        "const"      ],      "rows_examined_per_scan": 555,      "rows_produced_per_join": 0,      "filtered": "0.07",      "cost_info": {        "read_cost": "478.84",        "eval_cost": "0.04",        "prefix_cost": "534.34",        "data_read_per_join": "176"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100))"    }  }}1 row in set, 1 warning (0.00 sec)

加了HINT,

mysql explain format=json select /*+ index_merge(t1)*/ * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "5.23"    },    "table": {      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "intersect(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1,      "rows_produced_per_join": 1,      "filtered": "100.00",      "cost_info": {        "read_cost": "5.13",        "eval_cost": "0.10",        "prefix_cost": "5.23",        "data_read_per_join": "440"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100) and (`ytt`.`t1`.`rank1` = 100))"    }  }}1 row in set, 1 warning (0.00 sec)

对比下以上两个,加了HINT的比不加HINT的cost小了100倍。

总结下,就是说表的cardinality值影响这张的查询计划,如果这个值没有正常更新的话,就需要手工加HINT了。相信MySQL未来的版本会带来更多的HINT。

mysql 存储过程执行太慢怎么优化

1.当我们请求mysql服务器的时候,MySQL前端会有一个监听,请求到了之后,服务器得到相关的SQL语句,执行之前(虚线部分为执行),还会做权限的判断

2.通过权限之后,SQL就到MySQL内部,他会在查询缓存中,看该SQL有没有执行过,如果有查询过,则把缓存结果返回,说明在MySQL内部,也有一个查询缓存.但是这个查询缓存,默认是不开启的,这个查询缓存,和我们的Hibernate,Mybatis的查询缓存是一样的,因为查询缓存要求SQL和参数都要一样,所以这个命中率是非常低的(没什么卵用的意思)。

3.如果我们没有开启查询缓存,或者缓存中没有找到对应的结果,那么就到了解析器,解析器主要对SQL语法进行解析

4.解析结束后就变成一颗解析树,这个解析树其实在Hibernate里面也是有的,大家回忆一下,在以前做过Hibernate项目的时候,是不是有个一个antlr.jar。这个就是专门做语法解析的工具.因为在Hibernate里面有HQL,它就是通过这个工具转换成SQL的,我们编程语言之所以有很多规范、语法,其实就是为了便于这个解析器解析,这个学过编译原理的应该知道.

5.得到解析树之后,不能马上执行,这还需要对这棵树进行预处理,也就是说,这棵树,我没有经过任何优化的树,预处理器会这这棵树进行一些预处理,比如常量放在什么地方,如果有计算的东西,把计算的结果算出来等等...

6.预处理完毕之后,此时得到一棵比较规范的树,这棵树就是要拿去马上做执行的树,比起之前的那棵树,这棵得到了一些优化

7.查询优化器,是MySQL里面最关键的东西,我们写任何一条SQL,比如SELECT * FROM USER WHERE USERNAME = toby AND PASSWORD = 1,它会怎么去执行?它是先执行username = toby还是password = 1?每一条SQL的执行顺序查询优化器就是根据MySQL对数据统计表的一些信息,比如索引,比如表一共有多少数据,MySQL都是有缓存起来的,在真正执行SQL之前,他会根据自己的这些数据,进行一个综合的判定,判断这一次在多种执行方式里面,到底选哪一种执行方式,可能运行的最快.这一步是MySQL性能中,最关键的核心点,也是我们的优化原则.我们平时所讲的优化SQL,其实说白了,就是想让查询优化器,按照我们的想法,帮我们选择最优的执行方案,因为我们比MySQL更懂我们的数据.MySQL看数据,仅仅只是自己收集到的信息,这些信息可能是不准确的,MySQL根据这些信息选了一个它自认为最优的方案,但是这个方案可能和我们想象的不一样.

8.这里的查询执行计划,也就是MySQL查询中的执行计划,比如要先执行username = toby还是password = 1

9.这个执行计划会传给查询执行引擎,执行引擎选择存储引擎来执行这一份传过来的计划,到磁盘中的文件中去查询,这个时候重点来了,影响这个查询性能最根本的原因是什么?就是硬盘的机械运动,也就是我们平时熟悉的IO,所以一条查询语句是快还是慢,就是根据这个时间的IO来确定的.那怎么执行IO又是什么来确定的?就是传过来的这一份执行计划.(优化就是制定一个我们认为最快的执行方案,最节省IO,和执行最快)

10.如果开了查询缓存,则返回结果给客户端,并且查询缓存也放一份。


分享名称:mysql怎么优化最快,如何做mysql性能优化
新闻来源:http://cqcxhl.com/article/dssogds.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP