重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

go语言时间戳,go语言时间戳转化为字符串

golang使用Nsq

1. 介绍

成都创新互联公司坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都网站设计、网站建设、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的石首网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

最近在研究一些消息中间件,常用的MQ如RabbitMQ,ActiveMQ,Kafka等。NSQ是一个基于Go语言的分布式实时消息平台,它基于MIT开源协议发布,由bitly公司开源出来的一款简单易用的消息中间件。

官方和第三方还为NSQ开发了众多客户端功能库,如官方提供的基于HTTP的nsqd、Go客户端go-nsq、Python客户端pynsq、基于Node.js的JavaScript客户端nsqjs、异步C客户端libnsq、Java客户端nsq-java以及基于各种语言的众多第三方客户端功能库。

1.1 Features

1). Distributed

NSQ提供了分布式的,去中心化,且没有单点故障的拓扑结构,稳定的消息传输发布保障,能够具有高容错和HA(高可用)特性。

2). Scalable易于扩展

NSQ支持水平扩展,没有中心化的brokers。内置的发现服务简化了在集群中增加节点。同时支持pub-sub和load-balanced 的消息分发。

3). Ops Friendly

NSQ非常容易配置和部署,生来就绑定了一个管理界面。二进制包没有运行时依赖。官方有Docker image。

4.Integrated高度集成

官方的 Go 和 Python库都有提供。而且为大多数语言提供了库。

1.2 组件

1.3 拓扑结构

NSQ推荐通过他们相应的nsqd实例使用协同定位发布者,这意味着即使面对网络分区,消息也会被保存在本地,直到它们被一个消费者读取。更重要的是,发布者不必去发现其他的nsqd节点,他们总是可以向本地实例发布消息。

NSQ

首先,一个发布者向它的本地nsqd发送消息,要做到这点,首先要先打开一个连接,然后发送一个包含topic和消息主体的发布命令,在这种情况下,我们将消息发布到事件topic上以分散到我们不同的worker中。

事件topic会复制这些消息并且在每一个连接topic的channel上进行排队,在我们的案例中,有三个channel,它们其中之一作为档案channel。消费者会获取这些消息并且上传到S3。

nsqd

每个channel的消息都会进行排队,直到一个worker把他们消费,如果此队列超出了内存限制,消息将会被写入到磁盘中。Nsqd节点首先会向nsqlookup广播他们的位置信息,一旦它们注册成功,worker将会从nsqlookup服务器节点上发现所有包含事件topic的nsqd节点。

nsqlookupd

2. Internals

2.1 消息传递担保

1)客户表示已经准备好接收消息

2)NSQ 发送一条消息,并暂时将数据存储在本地(在 re-queue 或 timeout)

3)客户端回复 FIN(结束)或 REQ(重新排队)分别指示成功或失败。如果客户端没有回复, NSQ 会在设定的时间超时,自动重新排队消息

这确保了消息丢失唯一可能的情况是不正常结束 nsqd 进程。在这种情况下,这是在内存中的任何信息(或任何缓冲未刷新到磁盘)都将丢失。

如何防止消息丢失是最重要的,即使是这个意外情况可以得到缓解。一种解决方案是构成冗余 nsqd对(在不同的主机上)接收消息的相同部分的副本。因为你实现的消费者是幂等的,以两倍时间处理这些消息不会对下游造成影响,并使得系统能够承受任何单一节点故障而不会丢失信息。

2.2 简化配置和管理

单个 nsqd 实例被设计成可以同时处理多个数据流。流被称为“话题”和话题有 1 个或多个“通道”。每个通道都接收到一个话题中所有消息的拷贝。在实践中,一个通道映射到下行服务消费一个话题。

在更底的层面,每个 nsqd 有一个与 nsqlookupd 的长期 TCP 连接,定期推动其状态。这个数据被 nsqlookupd 用于给消费者通知 nsqd 地址。对于消费者来说,一个暴露的 HTTP /lookup 接口用于轮询。为话题引入一个新的消费者,只需启动一个配置了 nsqlookup 实例地址的 NSQ 客户端。无需为添加任何新的消费者或生产者更改配置,大大降低了开销和复杂性。

2.3 消除单点故障

NSQ被设计以分布的方式被使用。nsqd 客户端(通过 TCP )连接到指定话题的所有生产者实例。没有中间人,没有消息代理,也没有单点故障。

这种拓扑结构消除单链,聚合,反馈。相反,你的消费者直接访问所有生产者。从技术上讲,哪个客户端连接到哪个 NSQ 不重要,只要有足够的消费者连接到所有生产者,以满足大量的消息,保证所有东西最终将被处理。对于 nsqlookupd,高可用性是通过运行多个实例来实现。他们不直接相互通信和数据被认为是最终一致。消费者轮询所有的配置的 nsqlookupd 实例和合并 response。失败的,无法访问的,或以其他方式故障的节点不会让系统陷于停顿。

2.4 效率

对于数据的协议,通过推送数据到客户端最大限度地提高性能和吞吐量的,而不是等待客户端拉数据。这个概念,称之为 RDY 状态,基本上是客户端流量控制的一种形式。

efficiency

2.5 心跳和超时

组合应用级别的心跳和 RDY 状态,避免头阻塞现象,也可能使心跳无用(即,如果消费者是在后面的处理消息流的接收缓冲区中,操作系统将被填满,堵心跳)为了保证进度,所有的网络 IO 时间上限势必与配置的心跳间隔相关联。这意味着,你可以从字面上拔掉之间的网络连接 nsqd 和消费者,它会检测并正确处理错误。当检测到一个致命错误,客户端连接被强制关闭。在传输中的消息会超时而重新排队等待传递到另一个消费者。最后,错误会被记录并累计到各种内部指标。

2.6 分布式

因为NSQ没有在守护程序之间共享信息,所以它从一开始就是为了分布式操作而生。个别的机器可以随便宕机随便启动而不会影响到系统的其余部分,消息发布者可以在本地发布,即使面对网络分区。

这种“分布式优先”的设计理念意味着NSQ基本上可以永远不断地扩展,需要更高的吞吐量?那就添加更多的nsqd吧。唯一的共享状态就是保存在lookup节点上,甚至它们不需要全局视图,配置某些nsqd注册到某些lookup节点上这是很简单的配置,唯一关键的地方就是消费者可以通过lookup节点获取所有完整的节点集。清晰的故障事件——NSQ在组件内建立了一套明确关于可能导致故障的的故障权衡机制,这对消息传递和恢复都有意义。虽然它们可能不像Kafka系统那样提供严格的保证级别,但NSQ简单的操作使故障情况非常明显。

2.7 no replication

不像其他的队列组件,NSQ并没有提供任何形式的复制和集群,也正是这点让它能够如此简单地运行,但它确实对于一些高保证性高可靠性的消息发布没有足够的保证。我们可以通过降低文件同步的时间来部分避免,只需通过一个标志配置,通过EBS支持我们的队列。但是这样仍然存在一个消息被发布后马上死亡,丢失了有效的写入的情况。

2.8 没有严格的顺序

虽然Kafka由一个有序的日志构成,但NSQ不是。消息可以在任何时间以任何顺序进入队列。在我们使用的案例中,这通常没有关系,因为所有的数据都被加上了时间戳,但它并不适合需要严格顺序的情况。

2.9 无数据重复删除功能

NSQ对于超时系统,它使用了心跳检测机制去测试消费者是否存活还是死亡。很多原因会导致我们的consumer无法完成心跳检测,所以在consumer中必须有一个单独的步骤确保幂等性。

3. 实践安装过程

本文将nsq集群具体的安装过程略去,大家可以自行参考官网,比较简单。这部分介绍下笔者实验的拓扑,以及nsqadmin的相关信息。

3.1 拓扑结构

topology

实验采用3台NSQD服务,2台LOOKUPD服务。

采用官方推荐的拓扑,消息发布的服务和NSQD在一台主机。一共5台机器。

NSQ基本没有配置文件,配置通过命令行指定参数。

主要命令如下:

LOOKUPD命令

NSQD命令

工具类,消费后存储到本地文件。

发布一条消息

3.2 nsqadmin

对Streams的详细信息进行查看,包括NSQD节点,具体的channel,队列中的消息数,连接数等信息。

nsqadmin

channel

列出所有的NSQD节点:

nodes

消息的统计:

msgs

lookup主机的列表:

hosts

4. 总结

NSQ基本核心就是简单性,是一个简单的队列,这意味着它很容易进行故障推理和很容易发现bug。消费者可以自行处理故障事件而不会影响系统剩下的其余部分。

事实上,简单性是我们决定使用NSQ的首要因素,这方便与我们的许多其他软件一起维护,通过引入队列使我们得到了堪称完美的表现,通过队列甚至让我们增加了几个数量级的吞吐量。越来越多的consumer需要一套严格可靠性和顺序性保障,这已经超过了NSQ提供的简单功能。

结合我们的业务系统来看,对于我们所需要传输的发票消息,相对比较敏感,无法容忍某个nsqd宕机,或者磁盘无法使用的情况,该节点堆积的消息无法找回。这是我们没有选择该消息中间件的主要原因。简单性和可靠性似乎并不能完全满足。相比Kafka,ops肩负起更多负责的运营。另一方面,它拥有一个可复制的、有序的日志可以提供给我们更好的服务。但对于其他适合NSQ的consumer,它为我们服务的相当好,我们期待着继续巩固它的坚实的基础。

Go时区设置

全球以英国伦敦格林威治作为零度经线的起点,每隔15经度为一个时区,15度经线为该时区的中央经线,共分为24个时区。由西向东每隔15经度增加一个时区,相反的,每向西15经度减少一个时区。中国所在时区为东8区。

当前时间 time.Now() 返回的是当地时区的时间:

CST可以代表如下四个不同的时区:

time.Now() 返回的 +0800 CST 表示的就是中国标准时间,与UTC时间有如下的转化:

Wall Clocks表示挂钟时间,存储的是自1970 年 1 月 1 日 0 时 0 分 0 秒以来的时间戳,当系统和授时服务器进行校准时间时间操作时,有可能造成这一秒是2018-1-1 00:00:00,而下一秒变成了2017-12-31 23:59:59的情况。

Monotonic Clocks,意思是单调时间的,所谓单调,就是只会不停的往前增长,不受校时操作的影响,这个时间是自进程启动以来的秒数。

time.Now() 返回的 m=+0.004002201 就是表示Monotonic Clocks

go语言中如果不设置指定的时区,通过 time.Now() 获取到的就是本地时区

设置时区有两种方式:

固定时区到东八区。但这种不是对程序的全局设置,每次获取时都需要固定时区

加载指定时区。但如果没有go环境使用这种方式就会加载失败,因为时区信息是放在go的安装包中的。

如果你用第二种方式加载时区,在打docker镜像时就需要进行时区相关的配置,配置文件如下:

参考文章:

为什么要使用 Go 语言?Go 语言的优势在哪里

1、学习曲线

它包含了类C语法、GC内置和工程工具。这一点非常重要,因为Go语言容易学习,所以一个普通的大学生花一个星期就能写出来可以上手的、高性能的应用。在国内大家都追求快,这也是为什么国内Go流行的原因之一。

2、效率

Go拥有接近C的运行效率和接近PHP的开发效率,这就很有利的支撑了上面大家追求快速的需求。

3、出身名门、血统纯正

之所以说Go语言出身名门,是因为我们知道Go语言出自Google公司,这个公司在业界的知名度和实力自然不用多说。Google公司聚集了一批牛人,在各种编程语言称雄争霸的局面下推出新的编程语言,自然有它的战略考虑。而且从Go语言的发展态势来看,Google对它这个新的宠儿还是很看重的,Go自然有一个良好的发展前途。我们看看Go语言的主要创造者,血统纯正这点就可见端倪了。

4、组合的思想、无侵入式的接口

Go语言可以说是开发效率和运行效率二者的完美融合,天生的并发编程支持。Go语言支持当前所有的编程范式,包括过程式编程、面向对象编程以及函数式编程。

5、强大的标准库

这包括互联网应用、系统编程和网络编程。Go里面的标准库基本上已经是非常稳定,特别是我这里提到的三个,网络层、系统层的库非常实用。

6、部署方便

我相信这一点是很多人选择Go的最大理由,因为部署太方便,所以现在也有很多人用Go开发运维程序。

7、简单的并发

它包含降低心智的并发和简易的数据同步,我觉得这是Go最大的特色。之所以写正确的并发、容错和可扩展的程序如此之难,是因为我们用了错误的工具和错误的抽象,Go可以说这一块做的相当简单。

8、稳定性

Go拥有强大的编译检查、严格的编码规范和完整的软件生命周期工具,具有很强的稳定性,稳定压倒一切。那么为什么Go相比于其他程序会更稳定呢?这是因为Go提供了软件生命周期的各个环节的工具,如go

tool、gofmt、go test。

golang 时间戳比较大小,怎么实现

1

2

3

4

5

the_time, err := time.ParseInLocation("2006-01-02", "2017-01-10", time.Local)

if err == nil {

unix_time := the_time.Unix()

fmt.Println(unix_time)

}

谁能用简单明了的语言解释一下什么是“时间戳”

就是用秒数表示的时间,比如说现在是2017年8月22日,转为时间戳表示,就是对应的秒 该时间是从1970年1月1日开始算起

通过Go语言创建CA与签发证书

本篇文章中,将描述如何使用go创建CA,并使用CA签署证书。在使用openssl创建证书时,遵循的步骤是 创建秘钥 创建CA 生成要颁发证书的秘钥 使用CA签发证书。这种步骤,那么我们现在就来尝试下。

首先,会从将从创建 CA 开始。 CA 会被用来签署其他证书

接下来需要对证书生成公钥和私钥

然后生成证书:

我们看到的证书内容是PEM编码后的,现在 caBytes 我们有了生成的证书,我们将其进行 PEM 编码以供以后使用:

证书的 x509.Certificate 与CA的 x509.Certificate 属性有稍微不同,需要进行一些修改

为该证书创建私钥和公钥:

有了上述的内容后,可以创建证书并用CA进行签名

要保存成证书格式需要做PEM编码

创建一个 ca.go 里面是创建ca和颁发证书的逻辑

如果需要使用的话,可以引用这些函数

panic: x509: unsupported public key type: rsa.PublicKey

这里是因为 x509.CreateCertificate 的参数 privatekey 需要传入引用变量,而传入的是一个普通变量

extendedKeyUsage :增强型密钥用法(参见"new_oids"字段):服务器身份验证、客户端身份验证、时间戳。

keyUsage : 密钥用法,防否认(nonRepudiation)、数字签名(digitalSignature)、密钥加密(keyEncipherment)。

文章来自


新闻名称:go语言时间戳,go语言时间戳转化为字符串
地址分享:http://cqcxhl.com/article/dsspopo.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP