重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
而传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,例如:
创新互联公司坚信:善待客户,将会成为终身客户。我们能坚持多年,是因为我们一直可值得信赖。我们从不忽悠初访客户,我们用心做好本职工作,不忘初心,方得始终。十多年网站建设经验创新互联公司是成都老牌网站营销服务商,为您提供网站设计、做网站、网站设计、H5建站、网站制作、品牌网站制作、小程序定制开发服务,给众多知名企业提供过好品质的建站服务。
1、High performance - 对数据库高并发读写的需求
web2.0网站要根据用户个性化信息来实时生成动态页面和提供动态信息,所以基本上无法使用动态页面静态化技术,因此数据库并发负载非常高,往往要达到每秒上万次读写请求。关系数据库应付上万次SQL查询还勉强顶得住,但是应付上万次SQL写数据请求,硬盘IO就已经无法承受了。其实对于普通的BBS网站,往往也存在对高并发写请求的需求。
2、Huge Storage - 对海量数据的高效率存储和访问的需求
对于大型的SNS网站,每天用户产生海量的用户动态,以国外的Friendfeed为例,一个月就达到了2.5亿条用户动态,对于关系数据库来说,在一张2.5亿条记录的表里面进行SQL查询,效率是极其低下乃至不可忍受的。再例如大型web网站的用户登录系统,例如腾讯,盛大,动辄数以亿计的帐号,关系数据库也很难应付。
3、High Scalability High Availability- 对数据库的高可扩展性和高可用性的需求
在基于web的架构当中,数据库是最难进行横向扩展的,当一个应用系统的用户量和访问量与日俱增的时候,你的数据库却没有办法像web server和app server那样简单的通过添加更多的硬件和服务节点来扩展性能和负载能力。对于很多需要提供24小时不间断服务的网站来说,对数据库系统进行升级和扩展是非常痛苦的事情,往往需要停机维护和数据迁移,为什么数据库不能通过不断的添加服务器节点来实现扩展呢?
在上面提到的“三高”需求面前,关系数据库遇到了难以克服的障碍,而对于web2.0网站来说,关系数据库的很多主要特性却往往无用武之地,例如:
1、数据库事务一致性需求
很多web实时系统并不要求严格的数据库事务,对读一致性的要求很低,有些场合对写一致性要求也不高。因此数据库事务管理成了数据库高负载下一个沉重的负担。
2、数据库的写实时性和读实时性需求
对关系数据库来说,插入一条数据之后立刻查询,是肯定可以读出来这条数据的,但是对于很多web应用来说,并不要求这么高的实时性。
3、对复杂的SQL查询,特别是多表关联查询的需求
任何大数据量的web系统,都非常忌讳多个大表的关联查询,以及复杂的数据分析类型的复杂SQL报表查询,特别是SNS类型的网站,从需求以及产品设计角度,就避免了这种情况的产生。往往更多的只是单表的主键查询,以及单表的简单条件分页查询,SQL的功能被极大的弱化了。
因此,关系数据库在这些越来越多的应用场景下显得不那么合适了,为了解决这类问题的非关系数据库应运而生。
NoSQL 是非关系型数据存储的广义定义。它打破了长久以来关系型数据库与ACID理论大一统的局面。NoSQL 数据存储不需要固定的表结构,通常也不存在连接操作。在大数据存取上具备关系型数据库无法比拟的性能优势。该术语在 2009 年初得到了广泛认同。
当今的应用体系结构需要数据存储在横向伸缩性上能够满足需求。而 NoSQL 存储就是为了实现这个需求。Google 的BigTable与Amazon的Dynamo是非常成功的商业 NoSQL 实现。一些开源的 NoSQL 体系,如Facebook 的Cassandra, Apache 的HBase,也得到了广泛认同。
2. 什么是NoSQL?
2.1 NoSQL 概述
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,
泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题,包括超大规模数据的存储。
(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。
2.2 NoSQL代表
MongDB、 Redis、Memcache
3. 关系型数据库与NoSQL的区别?
3.1 RDBMS
高度组织化结构化数据
结构化查询语言(SQL)
数据和关系都存储在单独的表中。
数据操纵语言,数据定义语言
严格的一致性
基础事务
ACID
关系型数据库遵循ACID规则
事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性:
A (Atomicity) 原子性
原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整个事务就失败,需要回滚。比如银行转账,从A账户转100元至B账户,分为两个步骤:1)从A账户取100元;2)存入100元至B账户。这两步要么一起完成,要么一起不完成,如果只完成第一步,第二步失败,钱会莫名其妙少了100元。
C (Consistency) 一致性
一致性也比较容易理解,也就是说数据库要一直处于一致的状态,事务的运行不会改变数据库原本的一致性约束。
I (Isolation) 独立性
所谓的独立性是指并发的事务之间不会互相影响,如果一个事务要访问的数据正在被另外一个事务修改,只要另外一个事务未提交,它所访问的数据就不受未提交事务的影响。比如现有有个交易是从A账户转100元至B账户,在这个交易还未完成的情况下,如果此时B查询自己的账户,是看不到新增加的100元的
D (Durability) 持久性
持久性是指一旦事务提交后,它所做的修改将会永久的保存在数据库上,即使出现宕机也不会丢失。
3.2 NoSQL
代表着不仅仅是SQL
没有声明性查询语言
没有预定义的模式
键 - 值对存储,列存储,文档存储,图形数据库
最终一致性,而非ACID属性
非结构化和不可预知的数据
CAP定理
高性能,高可用性和可伸缩性
分布式数据库中的CAP原理(了解)
CAP定理:
Consistency(一致性), 数据一致更新,所有数据变动都是同步的
Availability(可用性), 好的响应性能
Partition tolerance(分区容错性) 可靠性
P: 系统中任意信息的丢失或失败不会影响系统的继续运作。
定理:任何分布式系统只可同时满足二点,没法三者兼顾。
CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,
因此,根据 CAP 原理将 NoSQL 数据库分成了满足 CA 原则、满足 CP 原则和满足 AP 原则三 大类:
CA - 单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。
CP - 满足一致性,分区容忍性的系统,通常性能不是特别高。
AP - 满足可用性,分区容忍性的系统,通常可能对一致性要求低一些。
CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。
而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。
所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。
说明:C:强一致性 A:高可用性 P:分布式容忍性
举例:
CA:传统Oracle数据库
AP:大多数网站架构的选择
CP:Redis、Mongodb
注意:分布式架构的时候必须做出取舍。
一致性和可用性之间取一个平衡。多余大多数web应用,其实并不需要强一致性。
因此牺牲C换取P,这是目前分布式数据库产品的方向。
4. 当下NoSQL的经典应用
当下的应用是 SQL 与 NoSQL 一起使用的。
代表项目:阿里巴巴商品信息的存放。
去 IOE 化。
ps:I 是指 IBM 的小型机,很贵的,好像好几万一台;O 是指 Oracle 数据库,也很贵的,好几万呢;M 是指 EMC 的存储设备,也很贵的。
难点:
数据类型多样性。
数据源多样性和变化重构。
数据源改造而服务平台不需要大面积重构。
NoSQL 数据库因其功能性、易于开发性和可扩展性而广受认可,它们越来越多地用于大数据和实时 Web 应用程序,在本文中,我们通过示例讨论 NoSQL、何时使用 NoSQL 与 SQL 及其用例。
NoSQL是一种下一代数据库管理系统 (DBMS)。NoSQL 数据库具有灵活的模式,可用于构建具有大量数据和高负载的现代应用程序。
“NoSQL”一词最初是由 Carlo Strozzi 在 1998 年创造的,尽管自 1960 年代后期以来就已经存在类似的数据库。然而,NoSQL 的发展始于 2009 年初,并且发展迅速。
在处理大量数据时,任何关系数据库管理系统 (RDBMS) 的响应时间都会变慢。为了解决这个问题,我们可以通过升级现有硬件来“扩大”信息系统,这非常昂贵。但是,NoSQL 可以更好地横向扩展并且更具成本效益。
NoSQL 对于非结构化或非常大的数据对象(例如聊天日志数据、视频或图像)非常有用,这就是为什么 NoSQL 在微软、谷歌、亚马逊、Meta (Facebook) 等互联网巨头中特别受欢迎的原因。
一些流行的 NoSQL 数据库包括:
随着企业更快地积累更大的数据集,结构化数据和关系模式并不总是适合。有必要使用非结构化数据和大型对象来更好地捕获这些信息。
传统的 RDBMS 使用 SQL(结构化查询语言)语法来存储和检索结构化数据,相反,NoSQL 数据库包含广泛的功能,可以存储和检索结构化、半结构化、非结构化和多态数据。
有时,NoSQL 也被称为“ 不仅仅是 SQL ”,强调它可能支持类似 SQL 的语言或与 SQL 数据库并列。SQL 和 NoSQL DBMS 之间的一个区别是 JOIN 功能。SQL 数据库使用 JOIN 子句来组合来自两个或多个表的行,因为 NoSQL 数据库本质上不是表格的,所以这个功能并不总是可行或相关的。
但是,一些 NoSQL DBMS 可以执行类似于 JOIN的操作——就像 MongoDB 一样。这并不意味着不再需要 SQL DBMS,相反,NoSQL 和 SQL 数据库倾向于以不同的方式解决类似的问题。
一般来说,在以下情况下,NoSQL 比 SQL 更可取:
许多行业都在采用 NoSQL,取代关系数据库,从而为某些业务应用程序提供更高的灵活性和可扩展性,下面给出了 NoSQL 数据库的一些企业用例。
内容管理是一组用于收集、管理、传递、检索和发布任何格式的信息的过程,包括文本、图像、音频和视频。NoSQL 数据库可以通过其灵活和开放的数据模型为存储多媒体内容提供更好的选择。
例如,福布斯在短短几个月内就构建了一个基于 MongoDB 的定制内容管理系统,以更低的成本为他们提供了更大的敏捷性。
大数据是指太大而无法通过传统处理系统处理的数据集,实时存储和检索大数据的系统在分析 历史 数据的同时使用流处理来摄取新数据,这是一系列非常适合 NoSQL 数据库的功能。
Zoom使用 DynamoDB(按需模式)使其数据能够在没有性能问题的情况下进行扩展,即使该服务在 COVID-19 大流行的早期使用量激增。
物联网设备具有连接到互联网或通信网络的嵌入式软件和传感器,能够在无需人工干预的情况下收集和共享数据。随着数十亿台设备生成数不清的数据,IoT NoSQL 数据库为 IoT 服务提供商提供了可扩展性和更灵活的架构。
Freshub就是这样的一项服务,它从 MySQL 切换到 MongoDB,以更好地处理其大型、动态、非统一的数据集。
拥有数十亿智能手机用户,可扩展性正成为在移动设备上提供服务的企业面临的最大挑战。具有更灵活数据模型的 NoSQL DBMS 通常是完美的解决方案。
例如,The Weather Channel使用 MongoDB 数据库每分钟处理数百万个请求,同时还处理用户数据并提供天气更新。
Web1.0的时代,数据访问量很有限,用一夫当关的高性能的单点服务器可以解决大部分问题。
随着Web2.0的时代的到来,用户访问量大幅度提升,同时产生了大量的用户数据。加上后来的智能移动设备的普及,所有的互联网平台都面临了巨大的性能挑战。
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,泛指非关系型的数据库。
NoSQL 不依赖业务逻辑方式存储,而以简单的key-value模式存储。因此大大的增加了数据库的扩展能力。
Memcache Memcache Redis Redis MongoDB MongoDB 列式数据库 列式数据库 Hbase Hbase
HBase是Hadoop项目中的数据库。它用于需要对大量的数据进行随机、实时的读写操作的场景中。
HBase的目标就是处理数据量非常庞大的表,可以用普通的计算机处理超过10亿行数据,还可处理有数百万列元素的数据表。
Cassandra Cassandra
Apache Cassandra是一款免费的开源NoSQL数据库,其设计目的在于管理由大量商用服务器构建起来的庞大集群上的海量数据集(数据量通常达到PB级别)。在众多显著特性当中,Cassandra最为卓越的长处是对写入及读取操作进行规模调整,而且其不强调主集群的设计思路能够以相对直观的方式简化各集群的创建与扩展流程。
主要应用:社会关系,公共交通网络,地图及网络拓谱(n*(n-1)/2)