重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

怎么在Tensorflow中使用tfrecord输入数据格式-创新互联

本篇文章给大家分享的是有关怎么在Tensorflow中使用tfrecord输入数据格式,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

10年积累的成都网站设计、网站制作经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站策划后付款的网站建设流程,更有江口免费网站建设让你可以放心的选择与我们合作。

1. TFRecord格式介绍

TFRecord文件中的数据是通过tf.train.Example Protocol Buffer的格式存储的,下面是tf.train.Example的定义

message Example {
 Features features = 1;
};

message Features{
 map featrue = 1;
};

message Feature{
  oneof kind{
    BytesList bytes_list = 1;
    FloatList float_list = 2;
    Int64List int64_list = 3;
  }
};

从上述代码可以看到,ft.train.Example 的数据结构相对简洁。tf.train.Example中包含了一个从属性名称到取值的字典,其中属性名称为一个字符串,属性的取值可以为字符串(BytesList ),实数列表(FloatList )或整数列表(Int64List )。例如我们可以将解码前的图片作为字符串,图像对应的类别标号作为整数列表。

2. 将自己的数据转化为TFRecord格式

准备数据

在上一篇中,我们为了像伟大的MNIST致敬,所以选择图像的前缀来进行不同类别的分类依据,但是大多数的情况下,在进行分类任务的过程中,不同的类别都会放在不同的文件夹下,而且类别的个数往往浮动性又很大,所以针对这样的情况,我们现在利用不同类别在不同文件夹中的图像来生成TFRecord.

我们在Iris&Contact这个文件夹下有两个文件夹,分别为iris,contact。对于每个文件夹中存放的是对应的图片

转换数据

数据准备好以后,就开始准备生成TFRecord,具体代码如下:

import os 
import tensorflow as tf 
from PIL import Image 
import matplotlib.pyplot as plt 

cwd='/home/ruyiwei/Documents/Iris&Contact/'
classes={'iris','contact'} 
writer= tf.python_io.TFRecordWriter("iris_contact.tfrecords") 

for index,name in enumerate(classes):
  class_path=cwd+name+'/'
  for img_name in os.listdir(class_path): 
    img_path=class_path+img_name 
    img=Image.open(img_path)
    img= img.resize((512,80))
    img_raw=img.tobytes()
    #plt.imshow(img) # if you want to check you image,please delete '#'
    #plt.show()
    example = tf.train.Example(features=tf.train.Features(feature={
      "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),
      'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))
    })) 
    writer.write(example.SerializeToString()) 

writer.close()

3. Tensorflow从TFRecord中读取数据

def read_and_decode(filename): # read iris_contact.tfrecords
  filename_queue = tf.train.string_input_producer([filename])# create a queue

  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)#return file_name and file
  features = tf.parse_single_example(serialized_example,
                    features={
                      'label': tf.FixedLenFeature([], tf.int64),
                      'img_raw' : tf.FixedLenFeature([], tf.string),
                    })#return image and label

  img = tf.decode_raw(features['img_raw'], tf.uint8)
  img = tf.reshape(img, [512, 80, 3]) #reshape image to 512*80*3
  img = tf.cast(img, tf.float32) * (1. / 255) - 0.5 #throw img tensor
  label = tf.cast(features['label'], tf.int32) #throw label tensor
  return img, label

4. 将TFRecord中的数据保存为图片

filename_queue = tf.train.string_input_producer(["iris_contact.tfrecords"]) 
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)  #return file and file_name
features = tf.parse_single_example(serialized_example,
                  features={
                    'label': tf.FixedLenFeature([], tf.int64),
                    'img_raw' : tf.FixedLenFeature([], tf.string),
                  }) 
image = tf.decode_raw(features['img_raw'], tf.uint8)
image = tf.reshape(image, [512, 80, 3])
label = tf.cast(features['label'], tf.int32)
with tf.Session() as sess: 
  init_op = tf.initialize_all_variables()
  sess.run(init_op)
  coord=tf.train.Coordinator()
  threads= tf.train.start_queue_runners(coord=coord)
  for i in range(20):
    example, l = sess.run([image,label])#take out image and label
    img=Image.fromarray(example, 'RGB')
    img.save(cwd+str(i)+'_''Label_'+str(l)+'.jpg')#save image
    print(example, l)
  coord.request_stop()
  coord.join(threads)

以上就是怎么在Tensorflow中使用tfrecord输入数据格式,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注创新互联行业资讯频道。


本文名称:怎么在Tensorflow中使用tfrecord输入数据格式-创新互联
文章分享:http://cqcxhl.com/article/eddic.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP