重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
Colormap如何在Matplotlib中使用?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
创新互联公司凭借专业的设计团队扎实的技术支持、优质高效的服务意识和丰厚的资源优势,提供专业的网站策划、成都做网站、成都网站设计、网站优化、软件开发、网站改版等服务,在成都10多年的网站建设设计经验,为成都超过千家中小型企业策划设计了网站。sepal length(花萼长度)
sepal width(花萼宽度)
petal length(花瓣长度)
petal width(花瓣宽度)
以上四个特征的单位都是厘米(cm)。
%matplotlib inline import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt iris_df = pd.read_csv('iris.csv',index_col='index_col') #用花萼长度作为 x 值, 花萼宽度作为 y 值绘制散点图 x = iris_df['PetalLength'].values y = iris_df['SepalLength'].values fig = plt.figure() ax= plt.axes() # 直接指定颜色 # 点的颜色都一样,颜色不反映更多的信息 plt.scatter(x, y,c='g') plt.show()
如果我们分析这个数据,图中的点聚集成 3 个组,如下图所示:
我们希望用点的颜色反映这种分组聚集的信息,可以这样做:
定义一个三个颜色的列表为 colormap;
定义一个数据归一化的实例,将希望关联颜色的数据映射到[0, 1]
区间;
使用 cmap, norm 实现图表元素的分组配色。
%matplotlib inline import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt iris_df = pd.read_csv('../Topics/iris.csv',index_col='index_col') x = iris_df['PetalLength'].values y = iris_df['SepalLength'].values fig = plt.figure() ax= plt.axes() #创建一个ListedColormap实例 #定义了[0, 1]区间的浮点数到颜色的映射规则 cmp = mpl.colors.ListedColormap(['r','g','b']) # 创建一个BoundaryNorm实例 # BoundaryNorm是数据分组中数据归一化比较好的方法 # 定义了变量值到 [0, 1]区间的映射规则,即数据归一化 norm = mpl.colors.BoundaryNorm([0, 2, 6.4, 7], cmp.N) #绘制散点图,用x值着色, #使用norm对变量值进行归一化, #使用自定义的ListedColormap颜色映射实例 #norm将变量x的值归一化 #cmap将归一化的数据映射到颜色 plt.scatter(x,y,c=x, cmap=cmp, norm=norm, alpha=0.7) plt.show()
上图就比较直观地反映了数据的分组信息。
上面的示例使用了 colors 模块中的主要功能,下面就详细讨论该模块的架构。
matplotlib.colors
模块的架构如下图所示:
matplotlib.colors
模块定义了11个类,定义了10个模块命名空间的方法。
matplotlib.colors
模块的主要功能就是将数字或颜色参数转换为RGB或RGBA。
RGB和RGBA分别是0-1范围内3个或4个浮点数的序列。参见上一篇 matplotlib 颜色定义格式规范中的相关内容。
此模块包括:
用于将数字归一化的类和方法,即将列表中的数据映射到[0,1]
区间的浮点数;
用于将归范化后的数字映射到一维数组中的颜色,称之为 colormap。
构建一个[0,1]
或[0, 255]
区间,该区间上有256个点;请想像把这256个点从左到右排列成一个长条;
通过Normalize
类(或者它的子类,映射方法不同)将数据映射到这个区间,比如上例中'PetalLength'数据区间是[1.0, 6.9]
, 就将区间[1.0, 6.9]
映射到[0, 1]
; 上例中定义了一个BoundaryNorm
实例;
构建一个colormap
(通常是它的子类)实例,该实例是一个颜色名称列表,或者浮点数数组表示的RGB值;
这个颜色列表依次排列在[0, 1]
这个区间的256个点上,但每个颜色(colormap中列出的颜色)占用的位置和区间则由Normalize
指定;上例中定义一个cmp = mpl.colors.ListedColormap(['r','g','b'])
,列出了3种颜色;
如果没有定义colormap
,则默认使用rc image.cmap
中的设置;
如果不指定Normalize
,则默认使用colors.Normalize
。
matplotlib.colors
模块的Colormap
类是一个基类,提供了将[0, 1]
的数据映射到颜色的一些属性和方法供其子类使用,很少直接使用该基类,主要使用它的两个子类:
ListedColrmap()
LinearSegmentedColormap()
这两个子类就是两种不同的映射方法。
ListedColormap()
类从颜色列表生成一个colormap
。
class matplotlib.colors.ListedColormap(colors, name='from_list', N=None)
**colors
**参数有两种形式:
matplotlib
接受的规范的颜色列表,如['r', 'g', 'b']
, 或['C0', 'C3', 'C7']
,等,详见基础篇;
用[0, 1]
区间的浮点数表示的RGB (N3)或 RGBA (N4)的数组,如:array((0.9, 0.1, 0.1),(0.1, 0.9, 0.1),(0.1, 0.1, 0.9))
以colors = ['r', 'g', 'b']
为例:
就是将[0, 1]
区间划分为三段,第一段映射为'r'色,第二段映射为'g'色,第三段映射为'b'色。
请看下面的示例:
#本示例演示对散点条分段着不同颜色 %matplotlib inline import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.colors x= np.linspace(1, 12, 24, endpoint=True) y=x/x fig = plt.figure() ax= plt.axes() # 将`[0, 1]`区间简单地分成四段,依次映射为列表`['r','g','b','y']`中列出的颜色 cmp = mpl.colors.ListedColormap(['r','g','b','y']) #绘制散点图,用x值着色 #没有指定Norm,所以使用默认的`colors.Normalize` #将x的值区间为 [1, 24]`映射(归一化)到`[0, 1]`区间 plt.scatter(x, y,s=120, marker='s', c=x, cmap=cmp) plt.show()
参数Name
可选参数。
给自定义的Colormap
命名,将这个Colormap注册到matplotlib,后面即可以通过名称来反复调用该colormap。
参数N
可选参数。
从列表中的颜色输入到映射的颜色数量。默认为None,即列表中的每个颜色都作为一项输入到映射中。简单地说,就是选用列表中的颜色数量。如果
N < len(colors)
,列表被截断,即选用列表前N个颜色,后面的丢弃。
N > len(colors)
,通过重复列表以扩展列表。
#本示例演示了参数 N 的用法 %matplotlib inline import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.colors x= np.linspace(1, 12, 24, endpoint=True) y=x/x fig = plt.figure() ax= plt.axes() ax.set_ylim(0.6, 1.5) # 将`[0, 1]`区间简单地分成 N 段 # 由于N>len(colors),所以重复列表以扩展颜色列表 cmp = mpl.colors.ListedColormap(['C2','C5','C0','C8'],N=6) # Ncolors.LinearSegmentedColormap()子类
class matplotlib.colors.LinearSegmentedColormap(name, segmentdata, N=256, gamma=1.0)基于线性分段的查找表,从线性映射段创建颜色映射 Colormap 对象。
线性分段查找表是使用对每个原色进行线性插值生成的。
segmentdata
参数就是这个线性分段查找表。
segmentdata
是一个带'red'、‘green'、'blue'元素项的字典,即这个字典有三个keys:‘red'、‘green'、‘blue'。每个健的值是一个列表,值列表的元素是形如:
(x, y0, y1)
的元组,每个元组是列表的一行。注意: ‘red'、‘green'、'blue'元素项不能少。
该字典中每个键的值列表的形式如下:
表中给定颜色的每一行都是形如x,y0,y1 的元组,若干个元组构成列表。
在每个键的值序列中,x 必须从
0 到 1
单调增加。对于介于x[i] 和x[i+1] 之间的任何输入值z, 给定颜色的输出值将在y1[i] 和 *y0[i+1]*之间线性插值。理解线性分段查找表segmentdata
colors.LinearSegmentedColormap()
子类在[0,1]
区间上每个点的颜色是由该点的'red'、‘green'、'blue'三原色的值混合确定;segmentdata 参数以一个字典形式提供每一段三原色值;
每个原色在
[0, 1]
区间上可以分段,分几段由键值对中值列表的行数决定,分段的点则由元组(x, y0, y1)
中的x
值决定,如:'red': [(0.0, 0.0, 0.0), (0.4, 1.0, 1.0), (1.0, 1.0, 1.0)]表示:
将
[0, 1]
区间分成两段,以 0.4 的位置为断点;[0, 0.4]
区间段内,'red'的值从 0.0 线性增加到 1.0;[0.4, 1.0]
区间段内,'red'的值保持 1.0 不变。
‘green', 'blue'值依此类推;
每个点的颜色则由三原色值混合而成。
#本示例演示 LinearSegmentedColormap 映射用法 #对数据分段,每一段的内部通过线性插值获得颜色值 #请注意比较与ListedColormap的不同 %matplotlib inline import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt x= np.linspace(1, 12, 24, endpoint=True) y=x/x fig = plt.figure() ax= plt.axes() ax.set_ylim(0.5,1.1) # 在0.4位置设置断点,分为两段 # 从0.0到0.4之间的 red 值是从 1.0 到 0.0 线性插值生成的(即渐变的),即从红色到黑色 # green, blue的值从开始点到结束点都是零 # 从 0.4 到 1.0,则始终是红色 cdict1 = {'red': [(0.0, 0.0, 1.0), (0.4, 0.0, 1.0), (1.0, 1.0, 1.0)], 'green': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)], 'blue': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)]} #将断点设置在0.8的位置 cdict2 = {'red': [(0.0, 0.0, 1.0), (0.8, 0.0, 1.0), (1.0, 1.0, 1.0)], 'green': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)], 'blue': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)]} cmp1 = mpl.colors.LinearSegmentedColormap('name',cdict1) cmp2 = mpl.colors.LinearSegmentedColormap('name',cdict2) #绘制散点图,用x值着色 plt.scatter(x, x/x*0.9,s=120,marker='s',c=x,cmap=cmp1,edgecolor='black') plt.scatter(x, x/x*0.7,s=120,marker='s',c=x,cmap=cmp2,edgecolor='black') plt.show()# 再看一个示例 %matplotlib inline import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt x= np.linspace(1, 12, 24, endpoint=True) y=x/x fig = plt.figure() ax= plt.axes() cdict = {'red': [(0.0, 0.0, 0.2), (0.5, 1.0, 1.0), (1.0, 1.0, 1.0)], 'green': [(0.0, 0.0, 0.5), (0.75, 1.0, 1.0), (1.0, 1.0, 1.0)], 'blue': [(0.0, 0.0, 0.3), (0.25,0.0, 0.0 ), (0.5, 0.0, 0.0), (1.0, 1.0, 1.0)]} cmp = mpl.colors.LinearSegmentedColormap('lsc',segmentdata=cdict) #绘制散点图,用x值着色 plt.scatter(x, y,s=120,marker='s',c=x,cmap=cmp,edgecolor='black') plt.show()matplotlib.cm 模块
matplotlib.colors
模块:
用于构建一个
[0, 1]
的标量数据到颜色的映射,Colormap 实例;将实际数据归一化到
[0, 1]
区间,Normalize
及其子类的实例。有时我们还需要对上述实例进行一些处理,如将自定义的Colormap注册到matplotlib,后面通过其名称调用它;查询Colormap在某个数据归一化方法下各点的RGBA值。
matplotlib设计了
cm
模块,提供了:
内置的颜色映射 colormap,将颜色名称映射到标准的颜色定义;
colormap 处理工具;
如注册一个Colormap,通过名称获取一个Colormap;
ScalarMappable
混合类,这个混合类用以支持将标量数据映射到RGBA颜色。ScalarMappable
在从给定的colormap返回RGBA颜色之前使用数据归一化化。
cm
模块设计了 1 个混合类,提供了17个函数方法。其中有3个函数方法属于模块空间:
matplotlib.cm.get_cmap(name=None, lut=None)
matplotlib.cm.register_cmap(name=None, cmap=None, data=None, lut=None)
matplotlib.cm.revcmap(data)
有14个函数方法属于
ScalarMappable
类空间:
add_checker(self, checker)
autoscale(self)
autoscale_None(self)
changed(self)
check_update(self, checker)
get_alpha(self)
get_array(self)
get_clim(self)
get_cmap(self)
set_array(self, A)
set_clim(self, vmin=None, vmax=None)
set_cmap(self, cmap)
set_norm(self, norm)
to_rgba(self, x, alpha=None, bytes=False, norm=True)
class ScalarMappable
class matplotlib.cm.ScalarMappable(norm=None, cmap=None)
ScalarMappable
混合类,用于支持标量数据到RGBA的映射。在从给定的colormap中返回RGBA颜色之前,ScalarMappable利用了数据归一化。注: 使用了ScalarMappable实例的
to_rgba()
方法。
matplotlib.cm.ScalarMappable
类充分利用data->normalize->map-to-color
处理链,以简化操作的步骤。
ScaplarMapable
类以matplotlib.colors
模块的Normalize
实例和Colormap
实例为参数。如果是
norm
=None,norm 默认为colors.Normalize对象。Colormap 有三个来源:
内置的;
第三方的colormap库;
自定义的。
如果为None,默认为
rcParams.image.cmap
中的设置。
matplotlib.colors
和matplotlib.cm
模块的关系如下图所示:%matplotlib inline import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt x= np.linspace(1, 12, 24, endpoint=True) y=x/x fig = plt.figure() ax= plt.axes() ax.set_ylim(0.8, 1.2) #传递不同的cmap #绘制散点图,用x值着色 plt.scatter(x, y*1.05,s=120, marker='s',c=x, cmap='viridis') plt.scatter(x, y*0.95,s=120, marker='s',c=x, cmap='magma') plt.show()#观察相同的cmap,不同的Norm,返回的RGBA值 norm1 = mpl.colors.LogNorm() norm2 = mpl.colors.TwoSlopeNorm(0.4) sm1 = mpl.cm.ScalarMappable(norm1, 'viridis') sm2 = mpl.cm.ScalarMappable(norm2, 'viridis')#观察相同的Norm, 不同的cmap,返回的RGBA值 norm = mpl.colors.LogNorm() sm3 = mpl.cm.ScalarMappable(norm, 'viridis') sm4 = mpl.cm.ScalarMappable(norm, 'magma')再看一个实例
%matplotlib inline import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt iris_df = pd.read_csv('iris.csv',index_col='index_col') iris_df.head() petal_l = iris_df['PetalLength'].values sepal_l = iris_df['SepalLength'].values x = petal_l y = sepal_l fig = plt.figure() ax= plt.axes() #调用cm.get_cmap()方法, #获取内置的名为'ocean'的olormap实例 cmp = plt.get_cmap('ocean') #创建一个Normalize实例 norm = plt.Normalize(vmin=np.min(x),vmax=np.max(x)) #绘制散点图,用x值着色, #使用norm对进行归一化, #使用内置的'ocean'映射 plt.scatter(x, y,c=x,cmap=cmp,norm=norm) plt.show()关于Colormap如何在Matplotlib中使用问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。
分享文章:Colormap如何在Matplotlib中使用-创新互联
URL地址:http://cqcxhl.com/article/gcgih.html