重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章给大家分享的是有关hive on spark怎样编译 的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
创新互联公司主要业务有网站营销策划、成都网站建设、做网站、微信公众号开发、微信平台小程序开发、H5建站、程序开发等业务。一次合作终身朋友,是我们奉行的宗旨;我们不仅仅把客户当客户,还把客户视为我们的合作伙伴,在开展业务的过程中,公司还积累了丰富的行业经验、成都全网营销资源和合作伙伴关系资源,并逐渐建立起规范的客户服务和保障体系。
Hive on Spark是Hive跑在Spark上,用的是Spark执行引擎,而不是MapReduce,和Hive on Tez的道理一样。
从Hive 1.1版本开始,Hive on Spark已经成为Hive代码的一部分了,并且在spark分支上面。
git clone https://github.com/apache/hive.git hive_on_spark
cd hive_on_spark/ git branch -r origin/HEAD -> origin/master origin/HIVE-4115 origin/HIVE-8065 origin/beeline-cli origin/branch-0.10 origin/branch-0.11 origin/branch-0.12 origin/branch-0.13 origin/branch-0.14 origin/branch-0.2 origin/branch-0.3 origin/branch-0.4 origin/branch-0.5 origin/branch-0.6 origin/branch-0.7 origin/branch-0.8 origin/branch-0.8-r2 origin/branch-0.9 origin/branch-1 origin/branch-1.0 origin/branch-1.0.1 origin/branch-1.1 origin/branch-1.1.1 origin/branch-1.2 origin/cbo origin/hbase-metastore origin/llap origin/master origin/maven origin/next origin/parquet origin/ptf-windowing origin/release-1.1 origin/spark origin/spark-new origin/spark2 origin/tez origin/vectorization git checkout origin/spark git branch* (分离自 origin/spark) master123456789101112131415161718192021222324252627282930313233343536373839404142434445
修改$HIVE_ON_SPARK/pom.xml
spark版本改成spark1.4.1
1.4.1 1
hadoop版本改成2.3.0-cdh6.1.0
2.3.0-cdh6.1.0 1
编译命令
export MAVEN_OPTS="-Xmx2g -XX:MaxPermSize=512M -XX:ReservedCodeCacheSize=512m"mvn clean package -Phadoop-2 -DskipTests12
spark home:/home/cluster/apps/spark/spark-1.4.1
hive home:/home/cluster/apps/hive_on_spark
1.set the property ‘spark.home’ to point to the Spark installation:
hive> set spark.home=/home/cluster/apps/spark/spark-1.4.1; 1
Define the SPARK_HOME environment variable before starting Hive CLI/HiveServer2:
export SPARK_HOME=/home/cluster/apps/spark/spark-1.4.11
3.Set the spark-assembly jar on the Hive auxpath:
hive --auxpath /home/cluster/apps/spark/spark-1.4.1/lib/spark-assembly-*.jar1
Add the spark-assembly jar for the current user session:
hive> add jar /home/cluster/apps/spark/spark-1.4.1/lib/spark-assembly-*.jar;1
Link the spark-assembly jar to $HIVE_HOME/lib.
[ERROR] Terminal initialization failed; falling back to unsupportedjava.lang.IncompatibleClassChangeError: Found class jline.Terminal, but interface was expected at jline.TerminalFactory.create(TerminalFactory.java:101) at jline.TerminalFactory.get(TerminalFactory.java:158) at jline.console.ConsoleReader.(ConsoleReader.java:229) at jline.console.ConsoleReader. (ConsoleReader.java:221) at jline.console.ConsoleReader. (ConsoleReader.java:209) at org.apache.hadoop.hive.cli.CliDriver.getConsoleReader(CliDriver.java:773) at org.apache.hadoop.hive.cli.CliDriver.executeDriver(CliDriver.java:715) at org.apache.hadoop.hive.cli.CliDriver.run(CliDriver.java:675) at org.apache.hadoop.hive.cli.CliDriver.main(CliDriver.java:615) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.apache.hadoop.util.RunJar.main(RunJar.java:212) Exception in thread "main" java.lang.IncompatibleClassChangeError: Found class jline.Terminal, but interface was expected123456789101112131415161718
解决方法:export HADOOP_USER_CLASSPATH_FIRST=true
其他场景的错误解决方法参见:https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
set spark.eventLog.dir= hdfs://master:8020/directory
否则查询会报错,否则一直报错:/tmp/spark-event类似的文件夹不存在
hive> set hive.execution.engine=spark;1
hive> set spark.master=spark://master:70771
或者yarn:spark.master=yarn
可以配置在spark-defaults.conf或者hive-site.xml
spark.master=spark.eventLog.enabled=true; spark.executor.memory=512m; spark.serializer=org.apache.spark.serializer.KryoSerializer; spark.executor.memory=... #Amount of memory to use per executor process.spark.executor.cores=... #Number of cores per executor.spark.yarn.executor.memoryOverhead=...spark.executor.instances=... #The number of executors assigned to each application.spark.driver.memory=... #The amount of memory assigned to the Remote Spark Context (RSC). We recommend 4GB.spark.yarn.driver.memoryOverhead=... #We recommend 400 (MB).12345678910
参数配置详见文档:https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
hive (default)> select city_id, count(*) c from city_info group by city_id order by c desc limit 5; Query ID = spark_20150309173838_444cb5b1-b72e-4fc3-87db-4162e364cb1e Total jobs = 1Launching Job 1 out of 1In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=In order to limit the maximum number of reducers: set hive.exec.reducers.max= In order to set a constant number of reducers: set mapreduce.job.reduces= state = SENT state = STARTED state = STARTED state = STARTED state = STARTED Query Hive on Spark job[0] stages:1Status: Running (Hive on Spark job[0]) Job Progress Format CurrentTime StageId_StageAttemptId: SucceededTasksCount(+RunningTasksCount-FailedTasksCount)/TotalTasksCount [StageCost]2015-03-09 17:38:11,822 Stage-0_0: 0(+1)/1 Stage-1_0: 0/1 Stage-2_0: 0/1state = STARTED state = STARTED state = STARTED2015-03-09 17:38:14,845 Stage-0_0: 0(+1)/1 Stage-1_0: 0/1 Stage-2_0: 0/1state = STARTED state = STARTED2015-03-09 17:38:16,861 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1 Stage-2_0: 0/1state = SUCCEEDED2015-03-09 17:38:17,867 Stage-0_0: 1/1 Finished Stage-1_0: 1/1 Finished Stage-2_0: 1/1 Finished Status: Finished successfully in 10.07 seconds OK city_id c -1000 22826-10 17294-20 10608-1 6186 4158Time taken: 18.417 seconds, Fetched: 5 row(s)
感谢各位的阅读!关于“hive on spark怎样编译 ”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!