重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

matlab广义回归神经网络GRNN的数据实例预测分析

本篇内容介绍了“matlab广义回归神经网络GRNN的数据实例预测分析”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

成都创新互联公司专注于企业成都全网营销推广、网站重做改版、赤坎网站定制设计、自适应品牌网站建设、H5技术商城系统网站开发、集团公司官网建设、成都外贸网站建设公司、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为赤坎等各大城市提供网站开发制作服务。

广义回归神经网络(GRNN)是径向基神经网络(RBF)的一种,GRNN具有很强的非线性映射能力和学习速度,比RBF具有更强的优势,网络最后收敛于样本量集聚较多的优化回归面,并且在样本数据少时,预测效果也较好。此外,网络还可以处理不稳定的数据,因此GRNN在很多领域得到应用。

%% 清空环境变量

clc;

clear

close all

nntwarn off;

%% 载入数据

load data;

% 载入数据并将数据分成训练和预测两类

p_train=p(1:12,:);

t_train=t(1:12,:);

p_test=p(13,:);

t_test=t(13,:);

%% 交叉验证

desired_spread=[];

mse_max=10e20;

desired_input=[];

desired_output=[];

result_perfp=[];

indices = crossvalind('Kfold',length(p_train),4);

h=waitbar(0,'正在寻找最优化参数....');

k=1;

for i = 1:4

    perfp=[];

    disp(['以下为第',num2str(i),'次交叉验证结果'])

    test = (indices == i); train = ~test;

    p_cv_train=p_train(train,:);

    t_cv_train=t_train(train,:);

    p_cv_test=p_train(test,:);

    t_cv_test=t_train(test,:);

    p_cv_train=p_cv_train';

    t_cv_train=t_cv_train';

    p_cv_test= p_cv_test';

    t_cv_test= t_cv_test';

    [p_cv_train,minp,maxp,t_cv_train,mint,maxt]=premnmx(p_cv_train,t_cv_train);

    p_cv_test=tramnmx(p_cv_test,minp,maxp);

    for spread=0.1:0.1:2

matlab广义回归神经网络GRNN的数据实例预测分析  

net=newgrnn(p_cv_train,t_cv_train,spread);

        waitbar(k/80,h);

        disp(['当前spread值为', num2str(spread)]);

        test_Out=sim(net,p_cv_test);

        test_Out=postmnmx(test_Out,mint,maxt);

        error=t_cv_test-test_Out;

        disp(['当前网络的mse为',num2str(mse(error))])

        perfp=[perfp mse(error)];

        if mse(error)

            mse_max=mse(error);

            desired_spread=spread;

            desired_input=p_cv_train;

            desired_output=t_cv_train;

        end

        k=k+1;

    end

    result_perfp(i,:)=perfp;

end;

matlab广义回归神经网络GRNN的数据实例预测分析  

close(h)

disp(['最佳spread值为',num2str(desired_spread)])

disp('此时最佳输入值为')

disp(desired_input)

disp('此时最佳输出值为')

disp(desired_output)

%% 采用最佳方法建立GRNN网络

net=newgrnn(desired_input,desired_output,desired_spread);

p_test=p_test';

p_test=tramnmx(p_test,minp,maxp);

grnn_prediction_result=sim(net,p_test);

grnn_prediction_result=postmnmx(grnn_prediction_result,mint,maxt);

grnn_error=t_test-grnn_prediction_result';

disp(['GRNN神经网络三项流量预测的误差为',num2str(abs(grnn_error))])

save best desired_input desired_output p_test t_test grnn_error mint maxt

“matlab广义回归神经网络GRNN的数据实例预测分析”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!


本文名称:matlab广义回归神经网络GRNN的数据实例预测分析
当前网址:http://cqcxhl.com/article/giohgj.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP