重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章给大家分享的是有关怎么用Matplotlib进行数据可视化的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
创新互联是专业的宝鸡网站建设公司,宝鸡接单;提供网站设计制作、成都网站建设,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行宝鸡网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!
01 导入Matplotlib
如果你安装了完整的Python Anaconda,那么你已经安装了Matplotlib,可以开始了。否则,你可能要访问官网获取安装说明。
http://matplotlib.org
就像我们用缩写np来表示NumPy一样,我们也会用一些标准的缩写来表示Matplotlib导入:
import matplotlib as mpl
import matplotlib.pyplot as plt
plt是我们最常用的一个接口。
02 生成一个简单的图形
言归正传,让我们创建第一个图形。
假设我们要绘制正弦函数sin(x)的一个简单线图。我们希望函数求x轴(0≤x≤10)上的所有值。我们将使用NumPy的linspace函数在x轴上创建一个线性空间,x值从0到10,共100个样本点:
import numpy as np
x = np.linspace(0, 10, 100)
我们可以使用NumPy的sin函数求sin函数的所有x值,并通过调用plt的plot函数可视化结果:
plt.plot(x, np.sin(x))
你亲自试过了吗?发生什么了?有什么发现吗?
问题是,这取决于你在何处运行这个脚本,你可能什么都看不到。以下是可以考虑的可能性:
1. 从.py脚本绘图
如果你正从一个脚本运行matplotlib,那么你只需要调用plt,如下所示:
plt.show()
调用后,图形就会显示出来!
2. 从IPython shell绘图
这实际上是以交互方式运行matplotlib的最便捷的方式之一。要显示绘图,你需要在启动IPython之后,调用%matplotlib魔术命令:
%matplotlib Using matplotlib backend: Qt5Agg
import matplotlib.pyplot as plt
然后,所有图都会自动显示出来,不必每次都调用plt.show()。
3. 从Jupyter Notebook绘图
如果你从基于浏览器的Jupyter Notebook上查看这段代码,你需要使用同样的%matplotlib魔术命令。可是,你还可以选择将图形直接嵌入notebook中,这有两种可能的结果:
%matplotlib notebook将生成的交互式图嵌入notebook中。
%matplotlib inline将生成的静态图嵌入notebook中。
我们通常会选择内联选项:
%matplotlib inline
现在,让我们再试一次:
plt.plot(x, np.sin(x))
上述命令给出的输出如图2-4所示。
▲图2-4 应用内联选项生成的图
稍后,如果你想保存图表,可以直接从IPython或Jupyter Notebook的选项中保存:
plt.savefig('figures/02.03-sine.png')
只要保证使用所支持的文件后缀即可,例如.jpg、.png、.tif、.svg、.eps或者.pdf。
在导入matplotlib之后,运行plt.style.use(style_name),你可以更改绘图的样式。在plt.style.available中列出了所有可用的样式。例如,试试plt.style.use('fivethirtyeight')、plt.style.use('ggplot')或者plt.style.use('seaborn-dark')。为了增加乐趣,可以运行plt.xkcd(),再尝试绘制其他内容。
03 可视化外部数据集的数据
作为本文的最后一个测试,让我们可视化一些来自外部数据集的数据,例如scikit-learn的digits数据集。
具体来说,我们将需要3个可视化工具:
用于实际数据的scikit-learn
用于数据处理的NumPy
Matplotlib
首先,让我们导入所有这些可视化工具:
import numpy as np from sklearn import datasets import matplotlib.pyplot as plt %matplotlib inline
第一步是实际加载数据:
digits = datasets.load_digits()
如果我们没有记错的话,digits应该有2个不同的字段:一个是data字段,包含实际的图像数据;另一个是target字段,包含图像标签。
与其相信我们的记忆,不如让我们研究一下digits对象。这通过输入字段名称、添加句点、再按下Tab键—digits.
print(digits.data.shape) print(digits.images.shape)
输出结果:
(1797, 64) (1797, 8, 8)
在这两个例子中,第一维都对应于数据集中的图像数。但是data将所有像素排列在一个大的向量中,而images则保留了每个图像的8×8空间排列。
因此,如果我们想绘制单张图像,images字段可能更合适。首先,使用NumPy的数组切割,从数据集中抓取一张图像:
img = digits.images[0, :, :]
这里,我们说想要抓取长为1797项的数组中的第一行,以及所有对应的8×8=64个像素。然后,我们可以使用plt的imshow函数绘制图像:
plt.imshow(img, cmap='gray') plt.savefig('figures/02.04-digit0.png')
上述命令给出的输出如图2-5所示。请注意,图像是模糊的,因为我们将该图像调整到了更大的尺寸。原始图像的大小只有8×8。
▲图2-5 生成单张图像的示例结果
此外,我们还可以使用cmap参数指定一个彩图。在默认情况下,Matplotlib使用MATLAB的默认彩图jet。可是,对于灰度图像,gray彩图更有意义。
最后,我们可以利用plt的subplot函数绘制一组数字样本。subplot函数与在MATLAB中一样,我们指定行数、列数以及当前子图的索引(从1开始)。我们将使用一个for循环遍历数据集中的前10个图像,每个图像都有自己的子图:
plt.figure(figsize=(14, 4)) for image_index in range(10): # images are 0-indexed, subplots are 1-indexed subplot_index = image_index + 1 plt.subplot(2, 5, subplot_index) plt.imshow(digits.images[image_index, :, :], cmap='gray')
生成的输出如图2-6所示。
▲图2-6 生成包含10个数字的一组子图
感谢各位的阅读!关于“怎么用Matplotlib进行数据可视化”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!