重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

Python决策树之基于信息增益的特征选择示例-创新互联

本文实例讲述了Python决策树之基于信息增益的特征选择。分享给大家供大家参考,具体如下:

主要从事网页设计、PC网站建设(电脑版网站建设)、wap网站建设(手机版网站建设)、成都响应式网站建设公司、程序开发、微网站、重庆小程序开发等,凭借多年来在互联网的打拼,我们在互联网网站建设行业积累了丰富的做网站、成都网站设计、网络营销经验,集策划、开发、设计、营销、管理等多方位专业化运作于一体,具备承接不同规模与类型的建设项目的能力。

基于信息增益的特征选取是一种广泛使用在决策树(decision tree)分类算法中用到的特征选取。该特征选择的方法是通过计算每个特征值划分数据集获得信息增益,通过比较信息增益的大小选取合适的特征值。

一、定义

1.1 熵

信息的期望值,可理解为数据集的无序度,熵的值越大,表示数据越无序,公式如下:

Python决策树之基于信息增益的特征选择示例

其中H表示该数据集的熵值, pi表示类别i的概率, 若所有数据集只有一个类别,那么pi=1H=0。因此H=0为熵的最小值,表示该数据集完全有序。

1.2 信息增益

熵的减少或者是数据无序度的减少。

二、流程

1、计算原始数据的信息熵H1

2、选取一个特征,根据特征值对数据进行分类,再对每个类别分别计算信息熵,按比例求和,得出这种划分方式的信息熵H2

3、计算信息增益:

infoGain = H1 - H2

4、根据2,3计算所有特征属性对应的信息增益,保留信息增益较大的特征属性。

三、实例

海洋生物数据

被分类项\特征 不浮出水面是否可以生存 是否有脚蹼 属于鱼类
1
2
3
4
5

3.1 原始数据信息熵

p(是鱼类) = p1 =0.4
p(非鱼类) = p2 =0.6

通过信息熵公式可得原始数据信息熵 H1 = 0.97095

3.2 根据特征分类计算信息熵

选择'不服出水面是否可以生存'作为分析的特征属性

可将数据集分为[1,2,3]与[4,5],分别占0.6和0.4。

[1,2,3]可计算该类数据信息熵为 h2=0.918295834054

[4,5] 可计算该类数据信息熵为 h3=0

计算划分后的信息熵 H2 = 0.6 * h2 + 0.4 * h3 = 0.550977500433

3.3 计算信息增益

infoGain_0 = H1-H2 = 0.419973094022

3.4 特征选择

同理可得对特征'是否有脚蹼'该特征计算信息增益 infoGain_1 = 0.170950594455

比较可得,'不服出水面是否可以生存'所得的信息增益更大,因此在该实例中,该特征是最好用于划分数据集的特征

四、代码

# -*- coding:utf-8 -*-
#! python2
import numpy as np
from math import log
data_feature_matrix = np.array([[1, 1],
                [1, 1],
                [1, 0],
                [0, 1],
                [0, 1]]) # 特征矩阵
category = ['yes', 'yes', 'no', 'no', 'no'] # 5个对象分别所属的类别
def calc_shannon_ent(category_list):
  """
  :param category_list: 类别列表
  :return: 该类别列表的熵值
  """
  label_count = {} # 统计数据集中每个类别的个数
  num = len(category_list) # 数据集个数
  for i in range(num):
    try:
      label_count[category_list[i]] += 1
    except KeyError:
      label_count[category_list[i]] = 1
  shannon_ent = 0.
  for k in label_count:
    prob = float(label_count[k]) / num
    shannon_ent -= prob * log(prob, 2) # 计算信息熵
  return shannon_ent
def split_data(feature_matrix, category_list, feature_index, value):
  """
  筛选出指定特征值所对应的类别列表
  :param category_list: 类别列表
  :param feature_matrix: 特征矩阵
  :param feature_index: 指定特征索引
  :param value: 指定特征属性的特征值
  :return: 符合指定特征属性的特征值的类别列表
  """
  # feature_matrix = np.array(feature_matrix)
  ret_index = np.where(feature_matrix[:, feature_index] == value)[0] # 获取符合指定特征值的索引
  ret_category_list = [category_list[i] for i in ret_index] # 根据索引取得指定的所属类别,构建为列表
  return ret_category_list
def choose_best_feature(feature_matrix, category_list):
  """
  根据信息增益获取最优特征
  :param feature_matrix: 特征矩阵
  :param category_list: 类别列表
  :return: 最优特征对应的索引
  """
  feature_num = len(feature_matrix[0]) # 特征个数
  data_num = len(category_list) # 数据集的个数
  base_shannon_ent = calc_shannon_ent(category_list=category_list) # 原始数据的信息熵
  best_info_gain = 0 # 最优信息增益
  best_feature_index = -1 # 最优特征对应的索引
  for f in range(feature_num):
    uni_value_list = set(feature_matrix[:, f]) # 该特征属性所包含的特征值
    new_shannon_ent = 0.
    for value in uni_value_list:
      sub_cate_list = split_data(feature_matrix=feature_matrix, category_list=category_list, feature_index=f, value=value)
      prob = float(len(sub_cate_list)) / data_num
      new_shannon_ent += prob * calc_shannon_ent(sub_cate_list)
    info_gain = base_shannon_ent - new_shannon_ent # 信息增益
    print '初始信息熵为:', base_shannon_ent, '按照特征%i分类后的信息熵为:' % f, new_shannon_ent, '信息增益为:', info_gain
    if info_gain > best_info_gain:
      best_info_gain = info_gain
      best_feature_index = f
  return best_feature_index
if __name__ == '__main__':
  best_feature = choose_best_feature(data_feature_matrix, category)
  print '最好用于划分数据集的特征为:', best_feature

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


新闻标题:Python决策树之基于信息增益的特征选择示例-创新互联
网址分享:http://cqcxhl.com/article/goses.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP