重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要介绍“什么是红黑树”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“什么是红黑树”文章能帮助大家解决问题。
专注于为中小企业提供网站设计制作、网站建设服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业班玛免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了成百上千企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。
想必大家对二叉树搜索树都不陌生,首先看一下二叉搜索树的定义:
二叉搜索树(Binary Search Tree),或者是一棵空树,或者是具有下列性质的二叉树:若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;它的左、右子树也分别为二叉排序树。
从理论上来说,二叉搜索树的查询、插入和删除一个节点的时间复杂度均为O(log(n)),已经完全可以满足我们的要求了,那么为什么还要有红黑树呢?
我们来看一个例子,向二叉搜索树中依次插入(1,2,3,4,5,6),插入之后是这样的
一般我们接触最多的是二叉树,也就是一个父节点最多有两个子节点。2-3树与二叉树的不同之处在于,一个父节点可以有两个子节点,也可以有三个子节点,并且其也满足类似二叉搜索树的性质。还有最重要的,2-3树的所有叶子节点都在同一层,且最后一层不能有空节点,类似于满二叉树。
我们依次插入10,9,8,7,6,5,4,3,2,1来看一下2-3数是如何进行自平衡的。
2-3树在插入元素之前首先要进行一次未命中的查找,然后将元素插入叶子节点中,之后再进行平衡操作,下面具体说明。
首先插入10,如下图
那么红黑树与2-3树有什么关系呢?现在我们对2-3树进行改造,改造成一个二叉树。怎么改造呢?对于2节点,保持不变;对于3节点,我们首先将3节点中左侧的元素标记为红色,如下图2所示。
然后我们将其改造成图3的形式;再将3节点的位于中间的子节点的父节点设置为父节点中那个红色的节点,如图4的所示;最后我们将图4的形式改为二叉树的样子,如图5所示。图5是不是很熟悉,没错,这就是我们常常提到的大名鼎鼎的红黑树了。关于“什么是红黑树”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注创新互联行业资讯频道,小编每天都会为大家更新不同的知识点。