重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
首先,普及一下pandas与numpy的区别:
10年积累的成都网站设计、网站建设、外贸网站建设经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站设计后付款的网站建设流程,更有合山免费网站建设让你可以放心的选择与我们合作。
pandas操作的数据集是Series,本质上是列表与字典的混合,常用的数据形式为DataFrame;
numpy操作的数据集是数组或矩阵。
1、对数组求均值、方差、标准差
2、对矩阵求标准差
注意:在求标准差时需要注意几个问题:
1、在统计学中,标准差分为两种:
(1)总体标准差:标准差公式根号内除以n,是有偏的。
(2)样本标准差:标准差公式根号内除以n-1,是无偏的。
2、pandas与numpy在计算标准差时的区别
(1)numpy
在numpy中计算标准差时,括号内要指定ddof的值,ddof表示自由度,当ddof=0时计算的是总体标准差;当ddof=1时计算的是样本标准差,当不为ddof设置值时,其默认为总体标准差。
(2)pandas
在使用pandas计算标准差时,其与numpy的默认情况是相反的,在默认情况下,pandas计算的标准差为样本标准差。
std()函数就是初高中学的标准差 numpy.std()
求标准差的时候默认是除以 n 的,即是有偏的,np.std无偏样本标准差方式为加入参数 ddof = 1
def fangcha(): a=float(raw_input("请输入a:")) b=float(raw_input("请输入b:")) c=float(raw_input("请输入C:")) d=(a+b+c)/3.0 e=((a-d)**2+(b-d)**2+(c-d)**2)/3.0 print "平均数是:%f方差是:%f" %(d,e) fangcha() Python2.7可用
numpy计算平均数 标准差 相关系数等基本知识
NumPy 是python 语言的一个第三方库,其支持大量高维度数组与矩阵运算。此外,NumPy 也针对数组运算提供大量的数学函数。
#导入Numpy库,并命名为np
import numpy as np
#创建一维数组
a = np.array([1, 2, 3])
# NumPy可以很方便地创建连续数组,比如我使用arange或linspace函数进行创建:
b = np.arange(1,5,1) // 返回一个有终点和起点、固定步长的排列,如起点是1,终点是4,步长为1,即【1,2,3,4】,
c = np.linspace(1,9,5) 返回一个有终点和起点、元素个数的的排列,如起点是1,终点是9,元素个数为5,即【1,3,5,7,9】
#通过NumPy可以自由地创建等差数组,同时也可以进行加、减、乘、除、求n次方和取余数。
求和:np.sum(a)
求取平均值:np.mean(a)
求取中位数:np.median(a)
求取加权平均数:np.average(a)
求取方差:var() np.var(a)
求取最小值:np.amin(a)
求取最大值:np.amax(a)
将两个数相加:np.add(x1, x2)
将两个数相减:np.subtract(x1, x2)
将两个数相乘:np.multiply(x1, x2)
将两个数相除:np.divide(x1, x2)
立方:np.power(x1, x2)
除余:np.remainder(x1, x2)
相关系数计算:np.corrcoef(a1, a2) (a1、a2都是矩阵)