重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

pythonops函数,pythonstop

python 常用的系统函数有哪些

1.常用内置函数:(不用import就可以直接使用)

创新互联是一家专业从事成都做网站、网站建设、网页设计的品牌网络公司。如今是成都地区具影响力的网站设计公司,作为专业的成都网站建设公司,创新互联依托强大的技术实力、以及多年的网站运营经验,为您提供专业的成都网站建设、营销型网站建设及网站设计开发服务!

help(obj) 在线帮助, obj可是任何类型

callable(obj) 查看一个obj是不是可以像函数一样调用

repr(obj) 得到obj的表示字符串,可以利用这个字符串eval重建该对象的一个拷贝

eval_r(str) 表示合法的python表达式,返回这个表达式

dir(obj) 查看obj的name space中可见的name

hasattr(obj,name) 查看一个obj的name space中是否有name

getattr(obj,name) 得到一个obj的name space中的一个name

setattr(obj,name,value) 为一个obj的name space中的一个name指向vale这个object

delattr(obj,name) 从obj的name space中删除一个name

vars(obj) 返回一个object的name space。用dictionary表示

locals() 返回一个局部name space,用dictionary表示

globals() 返回一个全局name space,用dictionary表示

type(obj) 查看一个obj的类型

isinstance(obj,cls) 查看obj是不是cls的instance

issubclass(subcls,supcls) 查看subcls是不是supcls的子类

类型转换函数

chr(i) 把一个ASCII数值,变成字符

ord(i) 把一个字符或者unicode字符,变成ASCII数值

oct(x) 把整数x变成八进制表示的字符串

hex(x) 把整数x变成十六进制表示的字符串

str(obj) 得到obj的字符串描述

list(seq) 把一个sequence转换成一个list

tuple(seq) 把一个sequence转换成一个tuple

dict(),dict(list) 转换成一个dictionary

int(x) 转换成一个integer

long(x) 转换成一个long interger

float(x) 转换成一个浮点数

complex(x) 转换成复数

max(...) 求最大值

min(...) 求最小值

用于执行程序的内置函数

complie 如果一段代码经常要使用,那么先编译,再运行会更快。

2.和操作系统相关的调用

系统相关的信息模块 import sys

sys.argv是一个list,包含所有的命令行参数.

sys.stdout sys.stdin sys.stderr 分别表示标准输入输出,错误输出的文件对象.

sys.stdin.readline() 从标准输入读一行 sys.stdout.write("a") 屏幕输出a

sys.exit(exit_code) 退出程序

sys.modules 是一个dictionary,表示系统中所有可用的module

sys.platform 得到运行的操作系统环境

sys.path 是一个list,指明所有查找module,package的路径.

操作系统相关的调用和操作 import os

os.environ 一个dictionary 包含环境变量的映射关系 os.environ["HOME"] 可以得到环境变量HOME的值

os.chdir(dir) 改变当前目录 os.chdir('d:\\outlook') 注意windows下用到转义

os.getcwd() 得到当前目录

os.getegid() 得到有效组id os.getgid() 得到组id

os.getuid() 得到用户id os.geteuid() 得到有效用户id

os.setegid os.setegid() os.seteuid() os.setuid()

os.getgruops() 得到用户组名称列表

os.getlogin() 得到用户登录名称

os.getenv 得到环境变量

os.putenv 设置环境变量

os.umask 设置umask

os.system(cmd) 利用系统调用,运行cmd命令

操作举例:

os.mkdir('/tmp/xx') os.system("echo 'hello' /tmp/xx/a.txt") os.listdir('/tmp/xx')

os.rename('/tmp/xx/a.txt','/tmp/xx/b.txt') os.remove('/tmp/xx/b.txt') os.rmdir('/tmp/xx')

用python编写一个简单的shell

#!/usr/bin/python

import os, sys

cmd = sys.stdin.readline()

while cmd:

os.system(cmd)

cmd = sys.stdin.readline()

用os.path编写平台无关的程序

os.path.abspath("1.txt") == os.path.join(os.getcwd(), "1.txt")

os.path.split(os.getcwd()) 用于分开一个目录名称中的目录部分和文件名称部分。

os.path.join(os.getcwd(), os.pardir, 'a', 'a.doc') 全成路径名称.

os.pardir 表示当前平台下上一级目录的字符 ..

os.path.getctime("/root/1.txt") 返回1.txt的ctime(创建时间)时间戳

os.path.exists(os.getcwd()) 判断文件是否存在

os.path.expanduser('~/dir') 把~扩展成用户根目录

os.path.expandvars('$PATH') 扩展环境变量PATH

os.path.isfile(os.getcwd()) 判断是否是文件名,1是0否

os.path.isdir('c:\Python26\temp') 判断是否是目录,1是0否

os.path.islink('/home/huaying/111.sql') 是否是符号连接 windows下不可用

os.path.ismout(os.getcwd()) 是否是文件系统安装点 windows下不可用

os.path.samefile(os.getcwd(), '/home/huaying') 看看两个文件名是不是指的是同一个文件

os.path.walk('/home/huaying', test_fun, "a.c")

遍历/home/huaying下所有子目录包括本目录,对于每个目录都会调用函数test_fun.

例:在某个目录中,和他所有的子目录中查找名称是a.c的文件或目录。

def test_fun(filename, dirname, names): //filename即是walk中的a.c dirname是访问的目录名称

if filename in names: //names是一个list,包含dirname目录下的所有内容

print os.path.join(dirname, filename)

os.path.walk('/home/huaying', test_fun, "a.c")

文件操作

打开文件

f = open("filename", "r") r只读 w写 rw读写 rb读二进制 wb写二进制 w+写追加

读写文件

f.write("a") f.write(str) 写一字符串 f.writeline() f.readlines() 与下read类同

f.read() 全读出来 f.read(size) 表示从文件中读取size个字符

f.readline() 读一行,到文件结尾,返回空串. f.readlines() 读取全部,返回一个list. list每个元素表示一行,包含"\n"\

f.tell() 返回当前文件读取位置

f.seek(off, where) 定位文件读写位置. off表示偏移量,正数向文件尾移动,负数表示向开头移动。

where为0表示从开始算起,1表示从当前位置算,2表示从结尾算.

f.flush() 刷新缓存

关闭文件

f.close()

regular expression 正则表达式 import re

简单的regexp

p = re.compile("abc") if p.match("abc") : print "match"

上例中首先生成一个pattern(模式),如果和某个字符串匹配,就返回一个match object

除某些特殊字符metacharacter元字符,大多数字符都和自身匹配。

这些特殊字符是 。^ $ * + ? { [ ] \ | ( )

字符集合(用[]表示)

列出字符,如[abc]表示匹配a或b或c,大多数metacharacter在[]中只表示和本身匹配。例:

a = ".^$*+?{\\|()" 大多数metachar在[]中都和本身匹配,但"^[]\"不同

p = re.compile("["+a+"]")

for i in a:

if p.match(i):

print "[%s] is match" %i

else:

print "[%s] is not match" %i

在[]中包含[]本身,表示"["或者"]"匹配.用

表示.

^出现在[]的开头,表示取反.[^abc]表示除了a,b,c之外的所有字符。^没有出现在开头,即于身身匹配。

-可表示范围.[a-zA-Z]匹配任何一个英文字母。[0-9]匹配任何数字。

\在[]中的妙用。

\d [0-9]

\D [^0-9]

\s [ \t\n\r\f\v]

\S [^ \t\n\r\f\v]

\w [a-zA-Z0-9_]

\W [^a-zA-Z0-9_]

\t 表示和tab匹配, 其他的都和字符串的表示法一致

\x20 表示和十六进制ascii 0x20匹配

有了\,可以在[]中表示任何字符。注:单独的一个"."如果没有出现[]中,表示出了换行\n以外的匹配任何字符,类似[^\n].

regexp的重复

{m,n}表示出现m个以上(含m个),n个以下(含n个). 如ab{1,3}c和abc,abbc,abbbc匹配,不会与ac,abbbc匹配。

m是下界,n是上界。m省略表下界是0,n省略,表上界无限大。

*表示{,} +表示{1,} ?表示{0,1}

最大匹配和最小匹配 python都是最大匹配,如果要最小匹配,在*,+,?,{m,n}后面加一个?.

match object的end可以得到匹配的最后一个字符的位置。

re.compile("a*").match('aaaa').end() 4 最大匹配

re.compile("a*?").match('aaaa').end() 0 最小匹配

使用原始字符串

字符串表示方法中用\\表示字符\.大量使用影响可读性。

解决方法:在字符串前面加一个r表示raw格式。

a = r"\a" print a 结果是\a

a = r"\"a" print a 结果是\"a

使用re模块

先用re.compile得到一个RegexObject 表示一个regexp

后用pattern的match,search的方法,得到MatchObject

再用match object得到匹配的位置,匹配的字符串等信息

RegxObject常用函数:

re.compile("a").match("abab") 如果abab的开头和re.compile("a")匹配,得到MatchObject

_sre.SRE_Match object at 0x81d43c8

print re.compile("a").match("bbab")

None 注:从str的开头开始匹配

re.compile("a").search("abab") 在abab中搜索第一个和re_obj匹配的部分

_sre.SRE_Match object at 0x81d43c8

print re.compile("a").search("bbab")

_sre.SRE_Match object at 0x8184e18 和match()不同,不必从开头匹配

re_obj.findall(str) 返回str中搜索所有和re_obj匹配的部分.

返回一个tuple,其中元素是匹配的字符串.

MatchObject的常用函数

m.start() 返回起始位置,m.end()返回结束位置(不包含该位置的字符).

m.span() 返回一个tuple表示(m.start(), m.end())

m.pos(), m.endpos(), m.re(), m.string()

m.re().search(m.string(), m.pos(), m.endpos()) 会得到m本身

m.finditer()可以返回一个iterator,用来遍历所有找到的MatchObject.

for m in re.compile("[ab]").finditer("tatbxaxb"):

print m.span()

高级regexp

| 表示联合多个regexp. A B两个regexp,A|B表示和A匹配或者跟B匹配.

^ 表示只匹配一行的开始行首,^只有在开头才有此特殊意义。

$ 表示只匹配一行的结尾

\A 表示只匹配第一行字符串的开头 ^匹配每一行的行首

\Z 表示只匹配行一行字符串的结尾 $匹配第一行的行尾

\b 只匹配词的边界 例:\binfo\b 只会匹配"info" 不会匹配information

\B 表示匹配非单词边界

示例如下:

print re.compile(r"\binfo\b").match("info ") #使用raw格式 \b表示单词边界

_sre.SRE_Match object at 0x817aa98

print re.compile("\binfo\b").match("info ") #没有使用raw \b表示退格符号

None

print re.compile("\binfo\b").match("\binfo\b ")

_sre.SRE_Match object at 0x8174948

分组(Group) 示例:re.compile("(a(b)c)d").match("abcd").groups() ('abc', 'b')

#!/usr/local/bin/python

import re

x = """

name: Charles

Address: BUPT

name: Ann

Address: BUPT

"""

#p = re.compile(r"^name:(.*)\n^Address:(.*)\n", re.M)

p = re.compile(r"^name:(?P.*)\n^Address:(?P.*)\n", re.M)

for m in p.finditer(x):

print m.span()

print "here is your friends list"

print "%s, %s"%m.groups()

Compile Flag

用re.compile得到RegxObject时,可以有一些flag用来调整RegxObject的详细特征.

DOTALL, S 让.匹配任意字符,包括换行符\n

IGNORECASE, I 忽略大小写

LOCALES, L 让\w \W \b \B和当前的locale一致

MULTILINE, M 多行模式,只影响^和$(参见上例)

VERBOSE, X verbose模式

怎么用python写tensorflow

开始使用

TensorFlow并不是一个纯粹的神经网络框架, 而是使用数据流图进行数值分析的框架.

TensorFlow使用有向图(graph)表示一个计算任务.图的节点称为ops(operations)表示对数据的处理,图的边flow 描述数据的流向.

该框架计算过程就是处理tensor组成的流. 这也是TensorFlow名称的来源.

TensorFlow使用tensor表示数据. tensor意为张量即高维数组,在python中使用numpy.ndarray表示.

TensorFlow使用Session执行图, 使用Variable维护状态.tf.constant是只能输出的ops, 常用作数据源.

下面我们构建一个只有两个constant做输入, 然后进行矩阵乘的简单图:

from tensorflow import Session, device, constant, matmul'''构建一个只有两个constant做输入, 然后进行矩阵乘的简单图:'''#如果不使用with session()语句, 需要手动执行session.close().

#with device设备指定了执行计算的设备:

#    "/cpu:0": 机器的 CPU.

#    "/gpu:0": 机器的第一个 GPU, 如果有的话.

#    "/gpu:1": 机器的第二个 GPU, 以此类推.

with Session() as session:  # 创建执行图的上下文

with device('/cpu:0'):  # 指定运算设备

mat1 = constant([[3, 3]])  # 创建源节点

mat2 = constant([[2], [2]])

product = matmul(mat1, mat2) # 指定节点的前置节点, 创建图

result = session.run(product) # 执行计算        print(result)123456789101112131415161718

下面使用Variable做一个计数器:

from tensorflow import Session, constant, Variable, add, assign, initialize_all_variables

state = Variable(0, name='counter') # 创建计数器one = constant(1) # 创建数据源: 1val = add(state, one) # 创建新值节点update = assign(state, val) # 更新计数器setup = initialize_all_variables() # 初始化Variablewith Session() as session:

session.run(setup) # 执行初始化

print(session.run(state)) # 输出初值

for i in range(3):

session.run(update) # 执行更新

print(session.run(state)) # 输出计数器值12345678910111213

在使用变量前必须运行initialize_all_variables()返回的图, 运行Variable节点将返回变量的值.

本示例中将构建图的过程写在了上下文之外, 而且没有指定运行设备.

上面示例中session.run只接受一个op作为参数, 实际上run可以接受op列表作为输入:

session.run([op1, op2])1

上述示例一直使用constant作为数据源, feed可以在运行时动态地输入数据:

from tensorflow import Session, placeholder, mul, float32

input1 = placeholder(float32)

input2 = placeholder(float32)

output = mul(input1, input2)with Session() as session:    print session.run(output, feed_dict={input1: [3], input2: [2]})1234567

实现一个简单神经网络

神经网络是应用广泛的机器学习模型, 关于神经网络的原理可以参见这篇随笔, 或者在tensorflow playground上体验一下在线demo.

首先定义一个BPNeuralNetwork类:

class BPNeuralNetwork:

def __init__(self):

self.session = tf.Session()

self.input_layer = None

self.label_layer = None

self.loss = None

self.trainer = None

self.layers = []    def __del__(self):

self.session.close()1234567891011

编写一个生成单层神经网络函数,每层神经元用一个数据流图表示.使用一个Variable矩阵表示与前置神经元的连接权重, 另一个Variable向量表示偏置值, 并为该层设置一个激励函数.

def make_layer(inputs, in_size, out_size, activate=None):

weights = tf.Variable(tf.random_normal([in_size, out_size]))

basis = tf.Variable(tf.zeros([1, out_size]) + 0.1)

result = tf.matmul(inputs, weights) + basis    if activate is None:        return result    else:        return activate(result)12345678

使用placeholder作为输入层.

self.input_layer = tf.placeholder(tf.float32, [None, 2])1

placeholder的第二个参数为张量的形状, [None, 1]表示行数不限, 列数为1的二维数组, 含义与numpy.array.shape相同.这里, self.input_layer被定义为接受二维输入的输入层.

同样使用placeholder表示训练数据的标签:

self.label_layer = tf.placeholder(tf.float32, [None, 1])1

使用make_layer为神经网络定义两个隐含层, 并用最后一层作为输出层:

self.loss = tf.reduce_mean(tf.reduce_sum(tf.square((self.label_layer - self.layers[1])), reduction_indices=[1]))1

tf.train提供了一些优化器, 可以用来训练神经网络.以损失函数最小化为目标:

self.trainer = tf.train.GradientDescentOptimizer(learn_rate).minimize(self.loss)1

使用Session运行神经网络模型:

initer = tf.initialize_all_variables()# do trainingself.session.run(initer)

for i in range(limit):

self.session.run(self.trainer, feed_dict={self.input_layer: cases, self.label_layer: labels})12345

使用训练好的模型进行预测:

self.session.run(self.layers[-1], feed_dict={self.input_layer: case})1

完整代码:

import tensorflow as tfimport numpy as npdef make_layer(inputs, in_size, out_size, activate=None):

weights = tf.Variable(tf.random_normal([in_size, out_size]))

basis = tf.Variable(tf.zeros([1, out_size]) + 0.1)

result = tf.matmul(inputs, weights) + basis    if activate is None:        return result    else:        return activate(result)class BPNeuralNetwork:

def __init__(self):

self.session = tf.Session()

self.input_layer = None

self.label_layer = None

self.loss = None

self.optimizer = None

self.layers = []    def __del__(self):

self.session.close()    def train(self, cases, labels, limit=100, learn_rate=0.05):

# 构建网络

self.input_layer = tf.placeholder(tf.float32, [None, 2])

self.label_layer = tf.placeholder(tf.float32, [None, 1])

self.layers.append(make_layer(self.input_layer, 2, 10, activate=tf.nn.relu))

self.layers.append(make_layer(self.layers[0], 10, 2, activate=None))

self.loss = tf.reduce_mean(tf.reduce_sum(tf.square((self.label_layer - self.layers[1])), reduction_indices=[1]))

self.optimizer = tf.train.GradientDescentOptimizer(learn_rate).minimize(self.loss)

initer = tf.initialize_all_variables()        # 做训练

self.session.run(initer)        for i in range(limit):

self.session.run(self.optimizer, feed_dict={self.input_layer: cases, self.label_layer: labels})    def predict(self, case):

return self.session.run(self.layers[-1], feed_dict={self.input_layer: case})    def test(self):

x_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])

y_data = np.array([[0, 1, 1, 0]]).transpose()

test_data = np.array([[0, 1]])

self.train(x_data, y_data)

print(self.predict(test_data))

nn = BPNeuralNetwork()

nn.test()12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152

上述模型虽然简单但是使用不灵活, 作者采用同样的思想实现了一个可以自定义输入输出维数以及多层隐含神经元的网络, 可以参见dynamic_bpnn.py

import tensorflow as tfimport numpy as npdef make_layer(inputs, in_size, out_size, activate=None):

weights = tf.Variable(tf.random_normal([in_size, out_size]))

basis = tf.Variable(tf.zeros([1, out_size]) + 0.1)

result = tf.matmul(inputs, weights) + basis    if activate is None:        return result    else:        return activate(result)class BPNeuralNetwork:

def __init__(self):

self.session = tf.Session()

self.loss = None

self.optimizer = None

self.input_n = 0

self.hidden_n = 0

self.hidden_size = []

self.output_n = 0

self.input_layer = None

self.hidden_layers = []

self.output_layer = None

self.label_layer = None

def __del__(self):

self.session.close()    def setup(self, ni, nh, no):

# 设置参数个数

self.input_n = ni

self.hidden_n = len(nh)  #隐藏层的数量

self.hidden_size = nh  #每个隐藏层中的单元格数

self.output_n = no        #构建输入层

self.input_layer = tf.placeholder(tf.float32, [None, self.input_n])        #构建标签层

self.label_layer = tf.placeholder(tf.float32, [None, self.output_n])        #构建隐藏层

in_size = self.input_n

out_size = self.hidden_size[0]

inputs = self.input_layer

self.hidden_layers.append(make_layer(inputs, in_size, out_size, activate=tf.nn.relu))        for i in range(self.hidden_n-1):

in_size = out_size

out_size = self.hidden_size[i+1]

inputs = self.hidden_layers[-1]

self.hidden_layers.append(make_layer(inputs, in_size, out_size, activate=tf.nn.relu))        #构建输出层

self.output_layer = make_layer(self.hidden_layers[-1], self.hidden_size[-1], self.output_n)    def train(self, cases, labels, limit=100, learn_rate=0.05):

self.loss = tf.reduce_mean(tf.reduce_sum(tf.square((self.label_layer - self.output_layer)), reduction_indices=[1]))

self.optimizer = tf.train.GradientDescentOptimizer(learn_rate).minimize(self.loss)

initer = tf.initialize_all_variables()        #做训练

self.session.run(initer)        for i in range(limit):

self.session.run(self.optimizer, feed_dict={self.input_layer: cases, self.label_layer: labels})    def predict(self, case):

return self.session.run(self.output_layer, feed_dict={self.input_layer: case})    def test(self):

x_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])

y_data = np.array([[0, 1, 1, 0]]).transpose()

test_data = np.array([[0, 1]])

self.setup(2, [10, 5], 1)

self.train(x_data, y_data)

print(self.predict(test_data))

nn = BPNeuralNetwork()

nn.test()12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576

python问题

程序是没有问题的,我在解释器下运行也是正常的。在解释器输入的时候要注意缩进,并且一定要注意不要多个语句块一起输入

至于ans = ops[op](*nums)

ops = {'+':add,'-':sub} 是个字典

op则等于+或者-, 假设op是'+',则ops[op] 则取出add这个函数

而后面的(*nums)则相当于将nums中的元素一次作为参数传递给add这个函数,比如nums = [3,4]

则ops[op](*nums) 相当于 add(3,4)

至于这样的调用函数的形式,你可以去看下python2.x的内置函数apply,这里的ops[op]相当于apply的functions函数,*nums相当于apply的args函数

apply不存在于3.x版本中

Python程序设计小学四则运算测试机 (随机函数举例)1、随机产生[1,10]之间的两个整数操作

import random

print "小学四则运算测试(输入0000退出):"

ops = ['+', '-', '*', '/']  # 运算符

ans = "" # 用户回答

i = 1    # 题号

while ans != "0000":

add1 = random.randint(1, 10)  # 数1

add2 = random.randint(1, 10)  # 数2

op = random.randint(0, 3)     # 随机运算符

eq = str(add1) + ops[op] + str(add2) # 算式

val = eval(eq)                # 算式答案

print "Q%d: %s=" %(i,eq)      # 输出提问

ans = raw_input("A: ")        # 用户回答

if ans == '0000':             # 退出循环

break

elif val == int(ans):         # 正确

print "right!"

else:                         # 错误

print "error. the right answer is %d" % val

i += 1                        # 更新题号

print

演示示例:


分享文章:pythonops函数,pythonstop
网址分享:http://cqcxhl.com/article/hcsece.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP