重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
WEB前端培训课程需要学习以下8方面的技术:
创新互联建站坚信:善待客户,将会成为终身客户。我们能坚持多年,是因为我们一直可值得信赖。我们从不忽悠初访客户,我们用心做好本职工作,不忘初心,方得始终。十余年网站建设经验创新互联建站是成都老牌网站营销服务商,为您提供成都网站建设、网站建设、网站设计、H5高端网站建设、网站制作、成都品牌网站建设、重庆小程序开发公司服务,给众多知名企业提供过好品质的建站服务。
1、前端核心基础:HTML +_CSS核心、【JavaScript基础语法】、JavaScript面向对象、JavaScript DOM和BOM编程、jQuery框架。
2、HTML5 + CSS3 + 移动端核心:HTML5新特性、Canvas专列、CSS3新特性、CSS3进阶、CSS3实例演练。
3、移动端:移动端核心、移动端适配、移动端特效。
4、服务器端:服务器端开发、数据库操作、前后端交互核心、微信公众号开发。
5、JavaScript高级:JavaScript基础深入剖析、JavaScript面向对象深入讲解、JavaScript异步编程、JavaScript函数式编程、JavaScript设计模式。
6、前端必备:性能优化、版本控制工具、模块化、项目构建工具。
7、高级框架:React框架基本使用、React框架进阶、Vue框架基本使用、Vue框架进阶、Vue源码分析。
8、小程序:原生小程序入门、原生小程序API使用、小程序框架Mpvue。感兴趣的话点击此处,免费学习一下
想了解更多有关WEB前端的相关信息,推荐咨询【达内教育】。该机构致力于面向IT互联网行业,培养软件开发工程师、测试工程师、UI设计师、网络营销工程师、会计等职场人才,拥有行业内完善的教研团队,强大的师资力量,确保学员利益,全方位保障学员学习;更是与多家企业签订人才培养协议,全面助力学员更好就业。达内IT培训机构,试听名额限时抢购。
根据数据科学家一生的三个发展阶段,将这些计划做了分类。大家可以自己判断哪些计划适合自己并按照计划行动起来。如果你已经成功地完成了现有阶段的任务,就可以转向下一阶段。
初级水平
什么是初学者?——如果解析学和数据科学对你来说是全新的领域,你也不知该行业的发展模式,而你又想在这个行业大展拳脚一番,那么初学者就是你。以下这些应该在你的计划之内。
1. R语言也好,Python语言也好,学习一门新的编程语言
我曾见到有同学同时学习R语言和Python语言,最后落得两手空空。这种做法是很致命的。你一定要沉下心来专攻一门。鉴于这两种语言都是开放源代码工具,所以在公司里都有广泛运用。Python被公认为最简单的编程语言,而R语言一直都是最受青睐的统计工具。学习哪一门的决定权在你,因为两个同等出色。
推荐课程:推荐R语言和Python入门课程《Python入门:数据挖掘实战》、《R语言入门》
2. 学习统计学和数学
统计学的内容全都是关于假设和数列,然而没有统计学和数学的知识你很难深入到数据行业里,这是数据科学家的重中之重。
3.一次性完成一门网络开放课程(最难执行)
大规模网络开放课程可以免费获取和学习,可这对你来说也是最难实现的诺言。很多学生通常一次性注册选修很多课程,结果一门也没有圆满完成。所以,你一定要一次专注一门课,完成之后再选下一门。
推荐课程:推荐R语言和python进阶课程:《R语言实战》、《Python进阶:数据挖掘算法》
4.了解业界动态,善于探索和发现
你要了解业内动态。我们生活在一个变化的世界,一夜之间事物就可能发生重大变化,今日和流行的技术明日就很可能面临淘汰。你一定要多与一些富有经验的专业人士、业内专家交流,预见未来的自己。所以赶快参与到讨论和聚会中来吧,关注一些微博微信,加入一些群组,多阅读一些书籍。
中级水平
中级水平的数据科学家是什么样的?——如果你已经完成了前一阶段的内容,有过机器学习基础知识的实践经验,掌握了建立预测模型的知识,那你就达到了中级水平。完成这一阶段需要强大的决心和持久的练习。你准备好迎接这个挑战了吗?
1.理解并构建你的机器学习技能
机器学习是数据科学和技术的未来。所有的大型企业都不惜重金雇用掌握这个技能的人才。毫无疑问,近日来这项技术的需求越来越大,现在正是你充分利用这一局面的大好时机。今年,你应该努力在机器学习上精益求精,深入掌握回归、聚类和分类与回归树(CART)技能。
推荐课程:《机器学习与R语言实践》,斯坦福大学公开课《机器学习》
2. 专注集成算法和Boosting算法
一旦你对机器学习充满自信,那就继续去学习其他模型。通过Boosting和集成算法,你的模型准确率与其他算法相比会突飞猛进。
3. 探索Spark、NoSQL和其他大数据工具
今年你的学习之旅始于大数据。考虑到大数据专业人员的需求激增,你一定要学习Spark,这个工具最近非常火爆。大数据的未来就在Spark,它广泛用于处理和操纵数据。除此之外,你还可以拓展到NoSQL和Hadoop领域来。
推荐课程:从Spark迈出学习第一步。推荐观看课程《大数据实战工具Spark》
4.给社区成员做分享
还有什么比分享知识更美妙呢!从今年开始,你可以把自己的知识分享给正在数据科学的路上不断探索的人们。你可以加入活跃的数据科学论坛,给他们答疑解惑,你也可以在附近的行业圈里发起聚会。
推荐任务:关注大数据公众号和论坛等等。
高级水平
对于进入这个阶段的人我就不需要来给出标准了,你们所了解的数据科学,很多人甚至连尝试的勇气都没有。身处这一阶段,你们的生活惬意而又自如。可有时还想去迎接挑战,以下是一些计划。
1. 建立深度学习模式
你们要为有志于成为数据科学家的人们树立榜样。你要下决心在今年建立深度学习的模式。全球的人都在用这一模式进行预测,它是机器学习的高级阶段,其准确率明显高于普通的机器学习模型。
推荐课程:完成深度学习辅导课程任务。
2.回馈
我相信知识的意义不是被束之高阁,而是与人分享。分享越多,收获越大。据说,如果你了解一个新概念并解释给你的两个朋友,你对这个概念的记忆很可能会更久。所以今年,你必须制定计划,运用自己的知识和经验帮助数据分析学领域的人。这也会为更多的在这个领域的人指明方向。
推荐任务:在社区分享你的知识。
3. 探索强化学习
强化学习是机器学习中最有效而又鲜有发现的领域。今年,你可以下定决心研究下这个领域。虽然很有挑战性,但是一定值得你去尝试。无人汽车、无人侦察机就是强化学习的硕果。一旦开始学习这些,你就自然而言地进入到了人工智能领域。
redis是一个使用ANSI C编写的开源、支持网络、基于内存、可选持久性的键值对存储数据库。是NoSQL(非关系型数据库)的典型代表,也是时下是最流行的键值对存储数据库。它支持字符串、哈希、链表、集合、有序集合五种数据存储类型。由于其基于内存运行的特性,相较于基于硬盘的数据库系统,从执行效率上讲有非常大的优势。但其本身的读与写的速度没有太大的差别。如果对这部分内容感兴趣,可以从黑马程序员获取测试相关课程了解一下。也有免费的公开课,官网对话框问一下就给
学习前端最有效的方法是持之以恒的坚持。
无论做什么,先别想那么多先做了再说,因为人都是懒惰,什么事情最先想到的都是走捷径,深怕付出了没有回报。学习这个事情,从小学老师就说,一定要好好学习天天向上,去总结了真的努力了,到头来除了抱怨还抱怨,总期望天上掉馅饼。方法有很多种,真的适合的才是真的有用,什么样的方法才适合自己,无论什么方法你得做了才有效!所以没有最有效的方法,只有持之以恒的坚持才是真正有效的。
作为一个初学者,你必须明确系统的学习方案,我建议一定有一个指导的人,全靠自己学,放弃的几率非常大,在你对于web前端还没有任何概念的时候,需要一个人领进门,之后就都靠自己钻研,第一步就是确定web前端都需要哪些内容,并且在多少时间内学完,建议时间6个月保底。
视频为主,书为辅。很多初学者在学习前端的时候非常喜欢去买书,但是最后的结果是什么?看来看去什么都不会写,所以在这里给大家提醒,书可以看,但是是在建立于你已经对于某个知识点有了具体操作的执行后,在用书去巩固概念,这样更加利于你对于知识的理解。
对于学习技术来讲,掌握一个学习方法是非常重要的,其实对于学习web前端来讲,学习方法确实很多都是相通的,一旦学习方法不对,可能就会造成“方法不对,努力白费”。其实关于这方面还是很多的,我就简单说个例子,有的人边听课边跟着敲代码,这样就不对,听课的时候就专心听,做题的时候就专心做题,这都是过来人的经验,一定要听。根据每个人的不同,可能学习方法也会有所出路,找到适合你自己的学习法方法是学习的前提。
不建议自己一个人瞎学,在我了解学习编程的这些人来看,从零基础开始学并且最后成功做这份工作的其实并没有几个,我觉得大部分原因就是因为他们都不了解web前端是干什么的,学什么的,就盲目的买书看,到处找视频看,最后看着看着就放弃了,所以我建议初学者在没有具体概念之前,还是找有经验的人请教一下,聊过之后你就会知道web前端具体是干什么的,该怎么学,这是我个人的小建议,可以不采纳。
自学路线:
第1阶段:前端页面重构(4周)
内容包含了:(PC端网站布局项目、HTML5+CSS3基础项目、WebApp页面布局项目)
第2阶段:JavaScript高级程序设计(5周)
内容包含:(原生JavaScript交互功能开发项目、面向对象进阶与ES5/ES6应用项目、JavaScript工具库自主研发项目)
第3阶段:PC端全栈项目开发(3周)
内容包含:(jQuery经典交互特效开发、HTTP协议、Ajax进阶与PHP/JAVA开发项目、前端工程化与模块化应用项目、PC端网站开发项目、PC端管理信息系统前端开发项目)
第4阶段:移动端项目开发(6周)
内容包含:(Touch端项目、微信场景项目、应用Angular+Ionic开发WebApp项目、应用Vue.js开发WebApp项目、应用React.js开发WebApp项目)
第5阶段:混合(Hybrid,ReactNative)开发(1周)
内容包含:(微信小程序开发、ReactNative、各类混合应用开发)
第6阶段:NodeJS全栈开发(1周)
内容包括:(WebApp后端系统开发、一、NodeJS基础与NodeJS核心模块二、Express三、noSQL数据库)。
网上有很多免费的web前端视频教程,可以跟着学学,给你推荐一套视频教程:网页链接。
先说一下自学前端如何入门吧。
方法:
第一:理清Web前端的知识结构。要想高效学习Web前端知识,首先应该搞清楚Web前端都包括哪些技术结构。Web前端开发虽然技术难度并不高,但是技术细节却比较多,内容也比较杂。Web前端的基础包括三大部分,包括Html、CSS和JavaScript,其中JavaScript是学习的重点,也是难点。另外,vue等框架也是需要熟练掌握的。
第二:紧跟技术发展趋势。目前Web前端的技术发展趋势有三个,其一是前端开发数据化;其二是前端开发高效化;其三是前端开发全栈化。前端开发数据化主要是大数据发展的影响,在大数据的推动下,Web前端逐渐涉及到了大量的数据展示任务。前端开发高效化主要体现在Web前端正在进行独立部署,前端与后端的沟通主要通过资源接口的方式来进行。前端开发全栈化也是一个比较明显的趋势,比如Nodejs的应用。
第三:注重动手实践能力的培养。学习前端开发一定要注重动手实践能力的培养,因为前端开发的细节比较多,所以只有多操作才能逐渐熟悉。
前端开发目前被称为“大前端”,整个前端开发也被赋予了更多的含义,包括Web前端开发、移动端开发、大数据呈现端开发以及部分后端开发任务等等。所以,想要在前端行业中走的更远,一定要注重知识结构的丰富性。
与其他编程语言相比,前端是公认的入行门槛较低的一门语言,但依然有很多人在学习之前会问零基础学习web前端难不难,要多久才能学会。学习的难易和时间当然是取决于学习的方式。
前端入门简单,但是深入学习之后,还是有一定学习难度的。如果你是零基础自学web前端的话,那么所花费的时间与精力是不可估计的。 如果系统学习5个月的时间可以帮助你快速成长为合格的web前端工程师。
路线:
第1阶段:前端页面重构(4周)
内容包含了:(PC端网站布局项目、HTML5+CSS3基础项目、WebApp页面布局项目)
第2阶段:JavaScript高级程序设计(5周)
内容包含:(原生JavaScript交互功能开发项目、面向对象进阶与ES5/ES6应用项目、JavaScript工具库自主研发项目)
第3阶段:PC端全栈项目开发(3周)
内容包含:(jQuery经典交互特效开发、HTTP协议、Ajax进阶与PHP/JAVA开发项目、前端工程化与模块化应用项目、PC端网站开发项目、PC端管理信息系统前端开发项目)
第4阶段:移动端项目开发(6周)
内容包含:(Touch端项目、微信场景项目、应用Angular+Ionic开发WebApp项目、应用Vue.js开发WebApp项目、应用React.js开发WebApp项目)
第5阶段:混合(Hybrid,ReactNative)开发(1周)
内容包含:(微信小程序开发、ReactNative、各类混合应用开发)
第6阶段:Node.js全栈开发(1周)
内容包括:(WebApp后端系统开发、一、Node.js基础与Node.js核心模块;二、Express;三、noSQL数据库)
至于视频教程,我这里有很多前端的全套教程,如果你需要的话,可以加一下我的学习交流裙裙,找我要就行了!
早期需要延迟处理的业务场景,更多的是通过定时任务扫表,然后执行满足条件的记录,具有频率高、命中低、资源消耗大的缺点。随着消息中间件的普及,延迟消息可以很好的处理这种场景,本文主要介绍延迟消息的使用场景以及基于常见的消息中间件如何实现延迟队列,最后给出了一个在网易公开课使用延迟队列的实践。
1、有效期:限时活动、拼团。。。
2、超时处理:取消超时未支付订单、超时自动确认收货。。。
4、重试:网络异常重试、打车派单、依赖条件未满足重试。。。
5、定时任务:智能设备定时启动。。。
1、RabbitMQ
1)简介:基于AMQP协议,使用Erlang编写,实现了一个Broker框架
a、Broker:接收和分发消息的代理服务器
b、Virtual Host:虚拟主机之间相互隔离,可理解为一个虚拟主机对应一个消息服务
c、Exchange:交换机,消息发送到指定虚拟机的交换机上
d、Binding:交换机与队列绑定,并通过路由策略和routingKey将消息投递到一个或多个队列中
e、Queue:存放消息的队列,FIFO,可持久化
f、Channel:信道,消费者通过信道消费消息,一个TCP连接上可同时创建成百上千个信道,作为消息隔离
2)延迟队列实现:RabbitMQ的延迟队列基于消息的存活时间TTL(Time To Live)和死信交换机DLE(Dead Letter Exchanges)实现
a、TTL:RabbitMQ支持对队列和消息各自设置存活时间,取二者中较小的值,即队列无消费者连接或消息在队列中一直未被消费的过期时间
b、DLE:过期的消息通过绑定的死信交换机,路由到指定的死信队列,消费者实际上消费的是死信队列上的消息
3)缺点:
a、配置麻烦,额外增加一个死信交换机和一个死信队列的配置
b、脆弱性,配置错误或者生产者消费者连接的队列错误都有可能造成延迟失效
2、RocketMQ
1)简介:来源于阿里,目前为Apache顶级开源项目,使用Java编写,基于长轮询的拉取方式,支持事务消息,并解决了顺序消息和海量堆积的问题
a、Broker:存放Topic并根据读取Producer的提交日志,将逻辑上的一个Topic分多个Queue存储,每个Queue上存储消息在提交日志上的位置
b、Name Server:无状态的节点,维护Topic与Broker的对应关系以及Broker的主从关系
2)延迟队列实现:RocketMQ发送延时消息时先把消息按照延迟时间段发送到指定的队列中(rocketmq把每种延迟时间段的消息都存放到同一个队列中),然后通过一个定时器进行轮训这些队列,查看消息是否到期,如果到期就把这个消息发送到指定topic的队列中
3)缺点:延迟时间粒度受限制(1s/5s/10s/30s/1m/2m/3m/4m/5m/6m/7m/8m/9m/10m/20m/30m/1h/2h)
3、Kafka
1)简介:来源于Linkedin,目前为Apache顶级开源项目,使用Scala和Java编写,基于zookeeper协调的分布式、流处理的日志系统,升级版为Jafka
2)延迟队列实现:Kafka支持延时生产、延时拉取、延时删除等,其基于时间轮和JDK的DelayQueue实现
a、时间轮(TimingWheel):是一个存储定时任务的环形队列,底层采用数组实现,数组中的每个元素可以存放一个定时任务列表
b、定时任务列表(TimerTaskList):是一个环形的双向链表,链表中的每一项表示的都是定时任务项
c、定时任务项(TimerTaskEntry):封装了真正的定时任务TimerTask
d、层级时间轮:当任务的到期时间超过了当前时间轮所表示的时间范围时,就会尝试添加到上层时间轮中,类似于钟表就是一个三级时间轮
e、JDK DelayQueue:存储TimerTaskList,并根据其expiration来推进时间轮的时间,每推进一次除执行相应任务列表外,层级时间轮也会进行相应调整
3)缺点:
a、延迟精度取决于时间格设置
b、延迟任务除由超时触发还可能被外部事件触发而执行
4、ActiveMQ
1)简介:基于JMS协议,Java编写的Apache顶级开源项目,支持点对点和发布订阅两种模式。
a、点对点(point-to-point):消息发送到指定的队列,每条消息只有一个消费者能够消费,基于拉模型
b、发布订阅(publish/subscribe):消息发送到主题Topic上,每条消息会被订阅该Topic的所有消费者各自消费,基于推模型
2)延迟队列实现:需要延迟的消息会先存储在JobStore中,通过异步线程任务JobScheduler将到达投递时间的消息投递到相应队列上
a、Broker Filter:Broker中定义了一系列BrokerFilter的子类构成拦截器链,按顺序对消息进行相应处理
b、ScheduleBroker:当消息中指定了延迟相关属性,并且jobId为空时,会生成调度任务存储到JobStore中,此时消息不会进入到队列
c、JobStore:基于BTree存储,key为任务执行的时间戳,value为该时间戳下需要执行的任务列表
d、JobScheduler:取JobStore中最小的key执行(调度时间最早的),执行时间=当前时间,将该任务列表依次投递到所属的队列,对于需要重复投递和投递失败的会再次存入JobStore中。
注: 此处JobScheduler的执行时间间隔可动态变化,默认0.5s,有新任务时会立即执行(Object-notifyAll())并设置时间间隔为0.1s,没有新任务后,下次执行时间为最近任务的调度执行时间。
3)缺点:投递到队列失败,将消息重新存入JobStore,消息调度执行时间=系统当前时间+延迟时间,会导致消息被真实投递的时间可能为设置的延迟时间的整数倍
5、Redis
1)简介:基于Key-Value的NoSQL数据库,由于其极高的性能常被当作缓存来使用,其数据结构支持:字符串、哈希、列表、集合、有序集合
2)延迟队列实现:Redis的延迟队列基于有序集合,score为执行时间戳,value为任务实体或任务实体引用
3)缺点:
a、实现复杂,本身不支持
b、完全基于内存,延迟时间长浪费内存资源
6、消息队列对比
1、公开课延迟队列技术选型
1)业务场景:关闭超时未支付订单、限时优惠活动、拼团
2)性能要求:订单、活动、拼团 数据量可控,上述MQ均能满足要求
3)可靠性:使用ActiveMQ、RabbitMQ、RocketMQ作为延迟队列更普遍
4)可用性:ActiveMQ、RocketMQ自身支持延迟队列功能,且目前公开课业务中使用的中间件为ActiveMQ和Kafka
5)延迟时间灵活:活动的开始和结束时间比较灵活,而RocketMQ时间粒度较粗,Kafka会依赖时间格有精度缺失
结论: 最终选择ActiveMQ来作为延迟队列
2、业务场景:关闭未支付订单
1)关闭微信未支付订单
2)关闭IOS未支付订单
3、ActiveMQ使用方式
1)activemq.xml中支持调度任务
2)发送消息时,设置message的延迟属性
其中:
a、延迟处理
AMQ_SCHEDULED_DELAY:设置多长时间后,投递给消费者(毫秒)
b、重复投递
AMQ_SCHEDULED_PERIOD:重复投递时间间隔(毫秒)
AMQ_SCHEDULED_REPEAT:重复投递次数
c、指定调度计划
AMQ_SCHEDULED_CRON:corn正则表达式
4、公开课使用中进行的优化
1)可靠性:针对实际投递时间可能翻倍的问题,结合ActiveMQ的重复投递,在消费者逻辑中做幂等处理来保证延迟时间的准确性
2)可追溯性:延迟消息及消费情况做数据库冗余存储
3)易用性:业务上定义好延迟枚举类型,直接使用JmsDelayTemplate发送,无需关心数据备份和参数等细节
1、无论是基于死信队列还是基于数据先存储后投递,本质上都是将延迟待发送的消息数据与正常订阅的队列分开存储,从而降低耦合度
2、无论是检查队头消息TTL还是调度存储的延迟数据,本质上都是通过定时任务来完成的,但是定时任务的触发策略以及延迟数据的存储方式决定了不同中间件之间的性能优劣
张浩,2018年加入网易传媒,高级Java开发工程师,目前在网易公开课主要做支付财务体系、版本迭代相关的工作。