重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
php 高并发解决思路解决方案,如何应对网站大流量高并发情况。本文为大家总结了常用的处理方式,但不是细节,后续一系列细节教程给出。希望大家喜欢。
在策勒等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站制作、成都做网站 网站设计制作按需求定制制作,公司网站建设,企业网站建设,成都品牌网站建设,成都营销网站建设,外贸营销网站建设,策勒网站建设费用合理。
一 高并发的概念
在互联网时代,并发,高并发通常是指并发访问。也就是在某个时间点,有多少个访问同时到来。
二 高并发架构相关概念
1、QPS (每秒查询率) : 每秒钟请求或者查询的数量,在互联网领域,指每秒响应请求数(指 HTTP 请求)
2、PV(Page View):综合浏览量,即页面浏览量或者点击量,一个访客在 24 小时内访问的页面数量
--注:同一个人浏览你的网站的同一页面,只记做一次 pv
3、吞吐量(fetches/sec) :单位时间内处理的请求数量 (通常由 QPS 和并发数决定)
4、响应时间:从请求发出到收到响应花费的时间
5、独立访客(UV):一定时间范围内,相同访客多次访问网站,只计算为 1 个独立访客
6、带宽:计算带宽需关注两个指标,峰值流量和页面的平均大小
7、日网站带宽: PV/统计时间(换算到秒) * 平均页面大小(kb)* 8
三 需要注意点:
1、QPS 不等于并发连接数(QPS 是每秒 HTTP 请求数量,并发连接数是系统同时处理的请求数量)
2、峰值每秒请求数(QPS)= (总 PV 数*80%)/ (六小时秒数*20%)【代表 80%的访问量都集中在 20%的时间内】
3、压力测试: 测试能承受的最大并发数 以及测试最大承受的 QPS 值
4、常用的性能测试工具【ab,wrk,httpload,Web Bench,Siege,Apache JMeter】
四 优化
1、当 QPS 小于 50 时
优化方案:为一般小型网站,不用考虑优化
2、当 QPS 达到 100 时,遇到数据查询瓶颈
优化方案: 数据库缓存层,数据库的负载均衡
3、当 QPS 达到 800 时, 遇到带宽瓶颈
优化方案:CDN 加速,负载均衡
4、当 QPS 达到 1000 时
优化方案: 做 html 静态缓存
5、当 QPS 达到 2000 时
优化方案: 做业务分离,分布式存储
五、高并发解决方案案例:
1、流量优化
防盗链处理(去除恶意请求)
2、前端优化
(1) 减少 HTTP 请求[将 css,js 等合并]
(2) 添加异步请求(先不将所有数据都展示给用户,用户触发某个事件,才会异步请求数据)
(3) 启用浏览器缓存和文件压缩
(4) CDN 加速
(5) 建立独立的图片服务器(减少 I/O)
3、服务端优化
(1) 页面静态化
(2) 并发处理
(3) 队列处理
4、数据库优化
(1) 数据库缓存
(2) 分库分表,分区
(3) 读写分离
(4) 负载均衡
5、web 服务器优化
(1) nginx 反向代理实现负载均衡
(2) lvs 实现负载均衡
一般来说,解决WEB高并发的有效手段都是采用可线性扩展的多层分布式架构,
我生产项目的架构是这样的,就在这里抛砖引玉一下。
Webserver (Nginx) :这一层是可以轻松分布式部署的,结合智能DNS解析可以简易地防止单点故障、实现区域访问加速,结合LVS很容易实现负载均衡。这一层主要是负责处理静态请求和转发PHP请求至第二层的PHP处理节点,至于静态资源地址()可以单独拿出来部署,或者直接使用商用的云存储服务(国内七牛不错,国外有Amazon S3)
PHP处理节点:一个节点其实就是一个监听特定端口的系统进程,webserver的请求通过负载均衡器(我用的AWS的loadbalancer)进行分发,很好实现分布式和负载均衡。我现在用的还是php自带的php-fpm,其实facebook出的hhvm性能非常强悍,但是还不能100%通过我项目的单元测试,等hhvm成熟过后可以平滑替换
高速缓存:用的memcached,这一层的作用主要是减轻数据库IO和加快热数据访问,缓存策略与程序耦合度较高,不赘述,但简单地说有两种方式,一种是在程序的全局层面加一个缓存处理,这种方法代码耦合度低,但是有效命中率不高,有些项目不一定适应,另一种是在具体的数据存取处加缓存处理,这种办法程序耦合度较高,但是缓存命中率非常高,几乎没有无效缓存存在,我用的是这种。
数据库 :我现在的项目数据规模不大,暂时只用了单台数据库,但是程序逻辑上已做好了数据库线性扩展的准备。其实数据库层的扩展是老生常谈了,常用手段是分库分表,这一块需要在前期的代码就打下基础,另外更平滑地手段是使用中间件,比如360的Atlas,阿里巴巴的cobar,淘宝的TDDL,中间件可以在不大范围变更代码的情况下扩展,但是具体的使用场景还是有限的,具体项目还需单独考察。
其他:根据不同的项目,架构还可以选择性地使用队列,我现在用的beantalkd,Redis也是一个很好的选择。队列常用的使用环境是邮件发送和站内消息推送上面,但是在某些场景下也可以作为核心数据库的缓冲,对应对大并发或者突发性流量也是不错的选择
并发读方面,多用内存缓存。减少数据库查询次数。多加几台数据库从服务器。
并发写方面,数据先走内存队列
?php
2 //优化方案1:将库存字段number字段设为unsigned,当库存为0时,因为字段不能为负数,将会返回false
3 include('./mysql.php');
4 $username = 'wang'.rand(0,1000);
5 //生成唯一订单
6 function build_order_no(){
7 return date('ymd').substr(implode(NULL, array_map('ord', str_split(substr(uniqid(), 7, 13), 1))), 0, 8);
8 }
9 //记录日志
10 function insertLog($event,$type=0,$username){
11 global $conn;
12 $sql="insert into ih_log(event,type,usernma)
13 values('$event','$type','$username')";
14 return mysqli_query($conn,$sql);
15 }
16 function insertOrder($order_sn,$user_id,$goods_id,$sku_id,$price,$username,$number)
17 {
18 global $conn;
19 $sql="insert into ih_order(order_sn,user_id,goods_id,sku_id,price,username,number)
20 values('$order_sn','$user_id','$goods_id','$sku_id','$price','$username','$number')";
21 return mysqli_query($conn,$sql);
22 }
23 //模拟下单操作
24 //库存是否大于0
25 $sql="select number from ih_store where goods_id='$goods_id' and sku_id='$sku_id' ";
26 $rs=mysqli_query($conn,$sql);
27 $row = $rs-fetch_assoc();
28 if($row['number']0){//高并发下会导致超卖
29 if($row['number']$number){
30 return insertLog('库存不够',3,$username);
31 }
32 $order_sn=build_order_no();
33 //库存减少
34 $sql="update ih_store set number=number-{$number} where sku_id='$sku_id' and number0";
35 $store_rs=mysqli_query($conn,$sql);
36 if($store_rs){
37 //生成订单
38 insertOrder($order_sn,$user_id,$goods_id,$sku_id,$price,$username,$number);
39 insertLog('库存减少成功',1,$username);
40 }else{
41 insertLog('库存减少失败',2,$username);
42 }
43 }else{
44 insertLog('库存不够',3,$username);
45 }
46 ?