重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
利用集合的不重复属性,可以先转换至集合,再用list()函数转换回来即可。
我们提供的服务有:成都做网站、网站设计、微信公众号开发、网站优化、网站认证、安康ssl等。为上千多家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的安康网站制作公司
比如,a是一个列表,a=list(set(a)),即可完成列表去重。
df.drop_duplicates('item_name')
方法一:
df.drop_duplicates('item_name').count()
方法二:
df['item_name'].nunique()
结果:50
附:nunique()和unique()的区别:
unique()是以 数组形式(numpy.ndarray)返回列的所有唯一值(特征的所有唯一值)
nunique()即返回的是唯一值的个数
比如:df['item_name'].unique()
要求:将下表中经验列将按周统计的转换为经验不限,保留学历
df1['经验'] = df1['经验'].apply(lambda x: '经验不限'+ x[-2:] if '周' in x else x)
#解释:将‘5天/周6个月’变成‘经验不限’,然后保留学历‘本科’
方法二:定义函数
def dataInterval(ss):
if '周' in ss:
return '经验不限'+ ss[-2:]
return ss
df1['经验'] = df1['经验'].apply(dataInterval)
利用set()函数,可以将列表去重,如:
s = [1, 3, 3, 5, 7, 7, 8, 9]
set(s) #输出为{1, 3, 5, 7, 8, 9}
list(set(s)) #输出 [1, 3, 5, 7, 8, 9]
case1:用集合的特性set(),去重后顺序会改变
case1.1:可以通过列表中索引(index)的方法保证去重后的顺序不变
case2:使用循环查找的方式,不改变顺序
case3:通过删除索引
case4:itertools.groupby
case5:fromkeys
case6:reduce方法
例如上面的例子,实现一个整形集合的累加。假设lst = [1,2,3,4,5],实现累加的方式有很多:
第一种:用sum函数。
sum(lst)
第二种:循环方式。
def customer_sum(lst):
result = 0
for x in lst:
result+=x
return result
def customer_sum(lst):
result = 0
while lst:
temp = lst.pop(0)
result+=temp
return result
if name ==" main ":
lst = [1,2,3,4,5]
print customer_sum(lst)
第三种:递推求和
def add(lst,result):
if lst:
temp = lst.pop(0)
temp+=result
return add(lst,temp)
else:
return result
if name ==" main ":
lst = [1,2,3,4,5]
print add(lst,0)
第四种:reduce方式
lst = [1,2,3,4,5]
print reduce(lambda x,y:x+y,lst)
lst = [1,2,3,4,5]
print reduce(lambda x,y:x+y,lst,0)
def add(x,y):
return x+y
print reduce(add, lst)
def add(x,y):
return x+y
print reduce(add, lst,0)
有一个序列集合,例如[1,1,2,3,2,3,3,5,6,7,7,6,5,5,5],统计这个集合所有键的重复个数,例如1出现了两次,2出现了两次等。大致的思路就是用字典存储,元素就是字典的key,出现的次数就是字典的value。方法依然很多
第一种:for循环判断
def statistics(lst):
dic = {}
for k in lst:
if not k in dic:
dic[k] = 1
else:
dic[k] +=1
return dic
lst = [1,1,2,3,2,3,3,5,6,7,7,6,5,5,5]
print(statistics(lst))
第二种:比较取巧的,先把列表用set方式去重,然后用列表的count方法
def statistics2(lst):
m = set(lst)
dic = {}
for x in m:
dic[x] = lst.count(x)
lst = [1,1,2,3,2,3,3,5,6,7,7,6,5,5,5]
print statistics2(lst)
第三种:用reduce方式
def statistics(dic,k):
if not k in dic:
dic[k] = 1
else:
dic[k] +=1
return dic
lst = [1,1,2,3,2,3,3,5,6,7,7,6,5,5,5]
print reduce(statistics,lst,{})
或者
d = {}
d.extend(lst)
print reduce(statistics,d)
通过上面的例子发现,凡是要对一个集合进行操作的,并且要有一个统计结果的,能够用循环或者递归方式解决的问题,一般情况下都可以用reduce方式实现。