重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

Pytorch如何加载部分预训练模型的参数-创新互联

这篇文章主要为大家展示了“Pytorch如何加载部分预训练模型的参数”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Pytorch如何加载部分预训练模型的参数”这篇文章吧。

创新互联公司2013年至今,先为洛江等服务建站,洛江等地企业,进行企业商务咨询服务。为洛江企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。

直接加载预选脸模型

如果我们使用的模型和预训练模型完全一样,那么我们就可以直接加载别人的模型,还有一种情况,我们在训练自己模型的过程中,突然中断了,但只要我们保存了之前的模型的参数也可以使用下面的代码直接加载我们保存的模型继续训练,不用从头开始。

model=DPN(*args, **kwargs)
model.load_state_dict(torch.load("DPN.pth"))

这样的加载方式是基于Pytorch使用的模型存储方法:

torch.save(DPN.state_dict(), "DPN.pth")

加载部分预训练模型参数

其实大多数时候我们根据自己的任物所提出的模型是在一些公开模型的基础上改变而来,其中公开模型的参数我们没有必要在从头开始训练,只要加载其训练好的模型参数即可,这样有助于提高训练的准确率和我们模型的泛化能力。

 model = DPN(num_init_features=64, k_R=96, G=32, k_sec=(3,4,20,3), inc_sec=(16,32,24,128), num_classes=1,decoder=args.decoder)
 http = {'url': 'http://data.lip6.fr/cadene/pretrainedmodels/dpn92_extra-b040e4a9b.pth'}
 pretrained_dict=model_zoo.load_url(http['url'])
 model_dict = model.state_dict()
 pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}#filter out unnecessary keys 
 model_dict.update(pretrained_dict)
 model.load_state_dict(model_dict)
 model = torch.nn.DataParallel(model).cuda()

因为需要删除预训练模型中不匹配的的键,也就是层的名字。

以上是“Pytorch如何加载部分预训练模型的参数”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联成都网站设计公司行业资讯频道!

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


标题名称:Pytorch如何加载部分预训练模型的参数-创新互联
链接分享:http://cqcxhl.com/article/hgcjd.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP