重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
1. 计算行列式 |A-λE|. 这是λ的多项式, 将其分解因子, 求出根即A的特征值
站在用户的角度思考问题,与客户深入沟通,找到垣曲网站设计与垣曲网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:网站设计、做网站、企业官网、英文网站、手机端网站、网站推广、申请域名、虚拟空间、企业邮箱。业务覆盖垣曲地区。
2. 对每个特征值λi, 求出齐次线性方程组 (A-λiE)X = 0 的基础解系.
则基础解系的非零线性组合即为A的属于特征值λi的所有特征向量.
满意请采纳^_^.
特征根如下:
4.8597
-0.7685
-0.0297 + 0.3674i
-0.0297 - 0.3674i
-0.0317
最大的是 4.8597
以上结果使用matlab,如果对小数位精度要求不满意,可修改程序提高精度
第一种方法:利用Matlab中的eig函数求解矩阵的特征根、特征向量。
第二种方法:利用Matlab中的roots函数求矩阵的特征值和特征多项式。
图文解释可以更好的帮助您,更加详细实操可以参考此条百度经验
若帮助到您,求采纳~
因为矩阵有非零的特征向量(定义),则矩阵的行列式:|a-λE|=0,计算行列式是关于λ的方程,解出λ即是矩阵的特征值。
1、设x是矩阵A的特征向量,先计算Ax;
2、发现得出的向量是x的某个倍数;
3、计算出倍数,这个倍数就是要求的特征值。
求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值;
第三步:对于的每一个特征值,求出齐次线性方程组的一个基础解系,则可求出属于特征值的全部特征向量。
扩展资料:
特征向量的性质:
特征向量对应的特征值是它所乘的那个缩放因子。特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。
线性变换的主特征向量是最大特征值对应的特征向量。特征值的几何重次是相应特征空间的维数。有限维向量空间上的一个线性变换的谱是其所有特征值的集合。
例如,三维空间中的旋转变换的特征向量是沿着旋转轴的一个向量,相应的特征值是1,相应的特征空间包含所有和该轴平行的向量。该特征空间是一个一维空间,因而特征值1的几何重次是1。特征值1是旋转变换的谱中唯一的实特征值。
把特征值代入特征方程,运用初等行变换法,将矩阵化到最简,然后可得到基础解系。求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值;
第三步:对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则可求出属于特征值的全部特征向量。
扩展资料
矩阵特征值性质
若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。
若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。
设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关 。
参考资料来源:百度百科-矩阵特征值