重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
可以使用math库
公司专注于为企业提供网站建设、成都做网站、微信公众号开发、商城建设,小程序制作,软件按需设计等一站式互联网企业服务。凭借多年丰富的经验,我们会仔细了解各客户的需求而做出多方面的分析、设计、整合,为客户设计出具风格及创意性的商业解决方案,创新互联更提供一系列网站制作和网站推广的服务。
import matha = 4print math.sqrt(4) # 2
也可以直接利用python的**运算符
a = 8a**(1/3) # 开3次方相当于1/3次乘方 结果是2 math中其他常用的数学函数:ceil(x) 取顶floor(x) 取底fabs(x) 取绝对值factorial (x) 阶乘hypot(x,y) sqrt(x*x+y*y)pow(x,y) x的y次方sqrt(x) 开平方log(x)log10(x)trunc(x) 截断取整数部分isnan (x) 判断是否NaN(not a number)degree (x) 弧度转角度radians(x) 角度转弧度
1:二分法
求根号5
a:折半: 5/2=2.5
b:平方校验: 2.5*2.5=6.255,并且得到当前上限2.5
c:再次向下折半:2.5/2=1.25
d:平方校验:1.25*1.25=1.56255,得到当前下限1.25
e:再次折半:2.5-(2.5-1.25)/2=1.875
f:平方校验:1.875*1.875=3.5156255,得到当前下限1.875
每次得到当前值和5进行比较,并且记下下下限和上限,依次迭代,逐渐逼近平方根:
代码如下:
import math
from math import sqrt
def sqrt_binary(num):
x=sqrt(num)
y=num/2.0
low=0.0
up=num*1.0
count=1
while abs(y-x)0.00000001:
print count,y
count+=1
if (y*ynum):
up=y
y=low+(y-low)/2
else:
low=y
y=up-(up-y)/2
return y
print(sqrt_binary(5))
print(sqrt(5))
2:牛顿迭代
仔细思考一下就能发现,我们需要解决的问题可以简单化理解。
从函数意义上理解:我们是要求函数f(x) = x²,使f(x) = num的近似解,即x² - num = 0的近似解。
从几何意义上理解:我们是要求抛物线g(x) = x² - num与x轴交点(g(x) = 0)最接近的点。
我们假设g(x0)=0,即x0是正解,那么我们要做的就是让近似解x不断逼近x0,这是函数导数的定义:
从几何图形上看,因为导数是切线,通过不断迭代,导数与x轴的交点会不断逼近x0。
python中可以使用2**0。5表示根号二。
python中表示根号二的方法有许多,比如使用math模块、使用内置函数pow或使用数学表达式。使用双星号表达根号二属于数学表达式。这种方式需要用户输入一个数字,并使用指数运算符**来计算该数的平方根。而输入的代码一般以num**0。5来表示根号数。
Python中星号可以对修饰的变量进行拆分,对修饰的形式参数进行参数聚集。单星号将被修饰的变量按元素方式拆分,对修饰的形式参数进行参数聚集。双星号将被修饰的变量按键值对进行拆分,对修饰的形式参数进行参数聚集。
首先,导入math函数库。
一、计算平方根
输入一个数值,保存在变量n中。
相关推荐:《Python基础教程》
用函数sqrt,计算变量平方根的值。
二、计算幂
可以用函数exp,计算e的x次幂。
三、计算对数
设置两个数,保存在变量n和a中。
接着,用log函数计算以a为基数n的对数。
运行程序,其结果如下图所示。
# -*- coding: utf-8 -*-
import math
def main(x):
x = 5
y = math.sqrt(x)
print(y)
if __name__ == "__main__":
main()