重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
元组是一种固定长度、不可变的Python对象序列。创建元组最简单的办法是用逗号分隔序列值:
我们是于2013年创立的成都网站建设公司,提供网站建设,电商网站设计开发,成都外贸网站建设公司,响应式网页设计,成都小程序开发、等服务。为客户创造有价值的品牌营销体验,让互联网提升企业的竞争力!
tuple 函数将任意序列或迭代器转换为元组:
中括号 [] 可以获取元组的元素, Python中序列索引从0开始 :
元组一旦创建,各个位置上的对象是无法被修改的,如果元组的一个对象是可变的,例如列表,你可以在它内部进行修改:
可以使用 + 号连接元组来生成更长的元组:
元组乘以整数,则会和列表一样,生成含有多份拷贝的元组:
将元组型的表达式赋值给变量,Python会对等号右边的值进行拆包:
拆包的一个常用场景就是遍历元组或列表组成的序列:
*rest 用于在函数调用时获取任意长度的位置参数列表:
count 用于计量某个数值在元组中出现的次数:
列表的长度可变,内容可以修改。可以使用 [] 或者 list 类型函数来定义列表:
append 方法将元素添加到列表尾部:
insert 方法可以将元素插入到指定列表位置:
( 插入位置范围在0到列表长度之间 )
pop 是 insert 的反操作,将特定位置的元素移除并返回:
remove 方法会定位第一个符合要求的值并移除它:
in 关键字可以检查一个值是否在列表中;
not in 表示不在:
+ 号可以连接两个列表:
extend 方法可以向该列表添加多个元素:
使用 extend 将元素添加到已经存在的列表是更好的方式,比 + 快。
sort 方法可以对列表进行排序:
key 可以传递一个用于生成排序值的函数,例如通过字符串的长度进行排序:
bisect.bisect 找到元素应当被插入的位置,返回位置信息
bisect.insort 将元素插入到已排序列表的相应位置保持序列排序
bisect 模块的函数并不会检查列表是否已经排序,因此对未排序列表使用bisect不会报错,但是可能导致不正确结果
切片符号可以对大多数序列类型选取子集,基本形式是 [start:stop]
起始位置start索引包含,结束位置stop索引不包含
切片还可以将序列赋值给变量:
start和stop可以省略,默认传入起始位置或结束位置,负索引可以从序列尾部进行索引:
步进值 step 可以在第二个冒号后面使用, 意思是每隔多少个数取一个值:
对列表或元组进行翻转时,一种很聪明的用法时向步进值传值-1:
dict(字典)可能是Python内建数据结构中最重要的,它更为常用的名字是 哈希表 或者 关联数组 。
字典是键值对集合,其中键和值都是Python对象。
{} 是创建字典的一种方式,字典中用逗号将键值对分隔:
你可以访问、插入或设置字典中的元素,:
in 检查字典是否含有一个键:
del 或 pop 方法删除值, pop 方法会在删除的同时返回被删的值,并删除键:
update 方法将两个字典合并:
update方法改变了字典元素位置,对于字典中已经存在的键,如果传给update方法的数据也含有相同的键,则它的值将会被覆盖。
字典的值可以是任何Python对象,但键必须是不可变的对象,比如标量类型(整数、浮点数、字符串)或元组(且元组内对象也必须是不可变对象)。
通过 hash 函数可以检查一个对象是否可以哈希化(即是否可以用作字典的键):
集合是一种无序且元素唯一的容器。
set 函数或者是用字面值集与大括号,创建集合:
union 方法或 | 二元操作符获得两个集合的联合即两个集合中不同元素的并集:
intersection 方法或 操作符获得交集即两个集合中同时包含的元素:
常用的集合方法列表:
和字典类似,集合的元素必须是不可变的。如果想要包含列表型的元素,必须先转换为元组:
Python中字符串是可哈希的,即可以作为字典的键或者HashTable的键使用。
您可以这样子使用Python内置函数hash(散列函数):
您也可以将字符串转为一个集合:
总之,Python里面有很多内置的hash功能性数据结构和函数。
哈希表(Hash Table) :通过键 key 和一个映射函数 Hash(key) 计算出对应的值 value,把关键码值映射到表中一个位置来访问记录,以加快查找的速度。
哈希函数(Hash Function) :将哈希表中元素的关键键值映射为元素存储位置的函数。
哈希冲突(Hash Collision) :不同的关键字通过同一个哈希函数可能得到同一哈希地址。
哈希表的两个核心问题是: 「哈希函数的构建」 和 「哈希冲突的解决方法」 。
常用的哈希函数方法有:直接定址法、除留余数法、平方取中法、基数转换法、数字分析法、折叠法、随机数法、乘积法、点积法等。
常用的哈希冲突的解决方法有两种:开放地址法和链地址法。
给你一个整数数组 nums 和两个整数 k 和 t 。请你判断是否存在 两个不同下标 i 和 j,使得 abs(nums[i] - nums[j]) = t ,同时又满足 abs(i - j) = k 。
如果存在则返回 true,不存在返回 false。
给定两个数组 nums1 和 nums2 ,返回 它们的交集 。输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序 。
给你两个整数数组 nums1 和 nums2 ,请你以数组形式返回两数组的交集。返回结果中每个元素出现的次数,应与元素在两个数组中都出现的次数一致(如果出现次数不一致,则考虑取较小值)。可以不考虑输出结果的顺序。
请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。
数字 1-9 在每一行只能出现一次。
数字 1-9 在每一列只能出现一次。
数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)
力扣217
力扣389
力扣496
内容参考:
哈希(Hash)算法:`hash(object)`
哈希算法将一个不定长的输入,通过散列函数变换成一个定长的输出,即散列值。是一种信息摘要算法。对象的hash值比原对象拥有更低的内存复杂度。
它不同于加密。哈希(hash)是将目标文本转换成具有相同长度的,不可逆的杂凑字符串,而加密则是将文本转换为具有相同长度的,可逆的密文。
哈希(hash)算法是不可逆的,只能由输入产生输出,不能由输出产生输入。而加密则是可逆的。即可以从输入产生输出,也可以反过来从输出推出输入。
对于hash算法,不同的数据应该生成不同的哈希值。如果两个不同的数据经过Hash函数计算得到的Hash值一样。就称为哈希碰撞(collision)。哈希碰撞无法被完全避免。只能降低发生概率。
好的hash函数会导致最少的hash碰撞。
*
可哈希性(hashable):
可哈希的数据类型为不可变的数据结构(如字符串srt,元组tuple,对象集objects等)。这种数据被称为可哈希性。
不可哈希性:
不可哈希的数据类型,为可变的数据结构(如字典dict,列表list和集合set等)。
如果对可变的对象进行哈希处理,则每次对象更新时,都需要更新哈希表。这样我们则需要将对象移至不同的数据集,这种操作会使花费过大。
因此设定不能对可变的对象进行hash处理。
**
**
Python3.x添加了hash算法的随机性,以提高安全性,因此对于每个新的python调用,同样的数据源生成的结果都将不同。
哈希方法有(MD5, SHA1, SHA256与SHA512等)。常用的有SH256与SHA512。MD5与SHA1不再常用。
- MDH5 (不常用)
- SHA1 (不常用)
- SHA256 (常用)
- SHA512 (常用)
一种局部敏感的hash算法,它产生的签名在一定程度上可以表征原内容的相似度。
可以被用来比较文本的相似度。
安装simhash:
Pip3 install simhash
感知哈希算法(perceptual Hash Algorithm)。用于检测图像和视频的差异。
安装Imagehash:
pip3 install Imagehash
比较下面两张图片的Imagehash值
可以看到两张图片的hash值非常相似。相似的图片可以生成相似的哈希值是Imagehash的特点。
内置函数就是Python给你提供的,拿来直接用的函数,比如print.,input等。
截止到python版本3.6.2 ,python一共提供了68个内置函数,具体如下
本文将这68个内置函数综合整理为12大类,正在学习Python基础的读者一定不要错过,建议收藏学习!
(1)列表和元组
(2)相关内置函数
(3)字符串
frozenset 创建一个冻结的集合,冻结的集合不能进行添加和删除操作。
语法:sorted(Iterable, key=函数(排序规则), reverse=False)
语法:fiter(function. Iterable)
function: 用来筛选的函数. 在filter中会自动的把iterable中的元素传递给function. 然后根据function返回的True或者False来判断是否保留留此项数据 , Iterable: 可迭代对象
搜索公众号顶级架构师后台回复“面试”,送你一份惊喜礼包。
语法 : map(function, iterable)
可以对可迭代对象中的每一个元素进行映射. 分别去执行 function
hash : 获取到对象的哈希值(int, str, bool, tuple). hash算法:(1) 目的是唯一性 (2) dict 查找效率非常高, hash表.用空间换的时间 比较耗费内存