重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
因为Oracle执行时有一个特性:已经执行过一遍的sql,再次执行时,Oracle不会重复查询数据,而是会直接调用上一次查询的结果,所以速度会快上很多。
站在用户的角度思考问题,与客户深入沟通,找到班戈网站设计与班戈网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:做网站、成都做网站、企业官网、英文网站、手机端网站、网站推广、国际域名空间、虚拟主机、企业邮箱。业务覆盖班戈地区。
你的问题我也没太看明白,写的太不清楚了,不过大体意思应该跟上面的原理有关系。第一次执行存储过程时,procedure里的sql已经执行过一遍,得出结果A,再次在该存储过程上加上条件进行查询的话,那么Oracle不会重复执行sql,而是直接在A的基础上进行二次查询,所以速度会快上很多。而不是你所理解的查询条件越多,速度越快。
查询条件的多寡和执行速度不一定挂钩,如果查询条件中的字段有索引,自然速度快,没有的话,就很慢了。说白了,查询条件速度是和索引挂钩的。
希望对你有所帮助
针对补充:其实你说的还是有点糊度-
-
对于数据库的查询速度而言,影响查询时间的主要因素并不是查询条件的多寡,而是IO接口的传输数据的速度,因为数据库的自查时间远小于IO的传输时间。你查询出的最终结果数量比较少,那么IO需要传输的数据少,自然速度快;如果数据多,那么IO接口需要传输的数据量大,速度自然降下来了……所以如果条件可以的话,还是多加点限制条件比较好,这样Oracle的反应速度快点。
不会的,查询view相当于重新执行创建view的语句,和直接拿语句查询没有区别的。两者没有任何差别。
如果你每次查询的结果,只占整张表的1%-5%左右(这个没有准确的说法,完全是根据经验),那么你可以在你使用的条件字段上创建索引。如果大于这个比例,那么还是不要建索引全表扫描吧,建了索引反而会更慢。
如果你用的是oracle 10g,你可以建索引在上面先,如果效率没提高就把索引删掉。
1. 选用适合的ORACLE优化器
ORACLE的优化器共有3种:
a. RULE (基于规则) b. COST (基于成本) c. CHOOSE (选择性)
设置缺省的优化器,可以通过对init.ora文件中OPTIMIZER_MODE参数的各种声明,如RULE,COST,CHOOSE,ALL_ROWS,FIRST_ROWS . 你当然也在SQL句级或是会话(session)级对其进行覆盖.
为了使用基于成本的优化器(CBO, Cost-Based Optimizer) , 你必须经常运行analyze 命令,以增加数据库中的对象统计信息(object statistics)的准确性.
如果数据库的优化器模式设置为选择性(CHOOSE),那么实际的优化器模式将和是否运行过analyze命令有关. 如果table已经被analyze过, 优化器模式将自动成为CBO , 反之,数据库将采用RULE形式的优化器.
在缺省情况下,ORACLE采用CHOOSE优化器, 为了避免那些不必要的全表扫描(full table scan) , 你必须尽量避免使用CHOOSE优化器,而直接采用基于规则或者基于成本的优化器.
2. 访问Table的方式
ORACLE 采用两种访问表中记录的方式:
a. 全表扫描
全表扫描就是顺序地访问表中每条记录. ORACLE采用一次读入多个数据块(database block)的方式优化全表扫描.
b. 通过ROWID访问表
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
3. 共享SQL语句
为了不重复解析相同的SQL语句,在第一次解析之后, ORACLE将SQL语句存放在内存中.这块位于系统全局区域SGA(system global area)的共享池(shared buffer pool)中的内存可以被所有的数据库用户共享. 因此,当你执行一个SQL语句(有时被称为一个游标)时,如果它
和之前的执行过的语句完全相同, ORACLE就能很快获得已经被解析的语句以及最好的
执行路径. ORACLE的这个功能大大地提高了SQL的执行性能并节省了内存的使用.
可惜的是ORACLE只对简单的表提供高速缓冲(cache buffering) ,这个功能并不适用于多表连接查询.
数据库管理员必须在init.ora中为这个区域设置合适的参数,当这个内存区域越大,就可以保留更多的语句,当然被共享的可能性也就越大了.
当你向ORACLE 提交一个SQL语句,ORACLE会首先在这块内存中查找相同的语句.
这里需要注明的是,ORACLE对两者采取的是一种严格匹配,要达成共享,SQL语句必须完全相同(包括空格,换行等).
4.选择最有效率的表名顺序(只在基于规则的优化器中有效)
ORACLE的解析器按照从右到左的顺序处理FROM子句中的表名,因此FROM子句中写在最后的表(基础表 driving table)将被最先处理. 在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表.当ORACLE处理多个表时, 会运用排序及合并的方式连接它们.首先,扫描第一个表(FROM子句中最后的那个表)并对记录进行派序,然后扫描第二个表(FROM子句中最后第二个表),最后将所有从第二个表中检索出的记录与第一个表中合适记录进行合并.如果有3个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指那个被其他表所引用的表.
5. WHERE子句中的连接顺序.
ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前, 那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾.
6. SELECT子句中避免使用 ‘ * ‘
当你想在SELECT子句中列出所有的COLUMN时,使用动态SQL列引用 ‘*' 是一个方便的方法.不幸的是,这是一个非常低效的方法. 实际上,ORACLE在解析的过程中, 会将'*' 依次转换成所有的列名, 这个工作是通过查询数据字典完成的, 这意味着将耗费更多的时间.
7. 减少访问数据库的次数
当执行每条SQL语句时, ORACLE在内部执行了许多工作: 解析SQL语句, 估算索引的利用率, 绑定变量 , 读数据块等等. 由此可见, 减少访问数据库的次数 , 就能实际上减少ORACLE的工作量.
注意: 在SQL*Plus , SQL*Forms和Pro*C中重新设置ARRAYSIZE参数, 可以增加每次数据库访问的检索数据量 ,建议值为200.
8. 使用DECODE函数来减少处理时间
使用DECODE函数可以避免重复扫描相同记录或重复连接相同的表.
9. 整合简单,无关联的数据库访问
如果你有几个简单的数据库查询语句,你可以把它们整合到一个查询中(即使它们之间没有关系)
10. 删除重复记录
最高效的删除重复记录方法 ( 因为使用了ROWID)
DELETE FROM EMP E
WHERE E.ROWID (SELECT MIN(X.ROWID)
FROM EMP X
WHERE X.EMP_NO = E.EMP_NO);
11. 用EXISTS替代IN
在许多基于基础表的查询中,为了满足一个条件,往往需要对另一个表进行联接.在这种情况下, 使用EXISTS(或NOT EXISTS)通常将提高查询的效率.
12. 用NOT EXISTS替代NOT IN
在子查询中,NOT IN子句将执行一个内部的排序和合并. 无论在哪种情况下,NOT IN都是最低效的 (因为它对子查询中的表执行了一个全表遍历). 为了避免使用NOT IN ,我们可以把它改写成外连接(Outer Joins)或NOT EXISTS
select * from CW_PZ_10002 subpartition(P_441301617882066_200911)
这种最快!
1、是否按时间分区,要看你的查询条件了,如果查询的都是有明确的日期,那当然可以分区,这样在查询过程中oracle只会在符合条件的分区中查询数据相当于减少了查询数量。
2、具体放在多少个表空间里这个是和你的硬件有直接关系的。如果你只有一块硬盘,那不论你分多少个表空间,在读写时也只有一个driver在运作,能快到哪去?而你有多个driver的话那你可以尝试将数据平均分布到各个driver上(这里asm就体现出强大的一面了,当然你也可以通过做条带化来实现)。
3、实际上具体的调优,你可以从尝试优化oracle的执行计划入手,几千万数据而已,不多。
怎么看执行计划?上网查o(∩_∩)o
逐条数据插入INSERT
数据导入的最简单方法就是编写 INSERT 语句,将数据逐条插入数据库。这种方法只适合导入少量数据,如 SQL*Plus 脚本创建某个表的种子数据。该方法的最大缺点就是导入速度缓慢,占用了大量的 CPU 处理时间,不适合大批量数据的导入;而其主要优点就是导入构思简单又有修改完善的弹性,不需要多做其它的准备就可以使用。如果你有很多时间没法打发,又想折磨一下数据库和 CPU,那这种方法正适合你。
为了与其它方法做比较,现将十万条记录通过此方法导入到 CALLS 表中,总共消耗 172 秒,其中导入进程占用 CPU 时间为 52 秒。
逐条数据插入 INSERT,表暂无索引
为什么上一种方法占用了较多的 CPU 处理时间,关键是 CALLS 表中已创建了索引,当一条数据插入到表中时,Oracle 需要判别新数据与老数据在索引方面是否有冲突,同时要更新表中的所有索引,重复更新索引会消耗一定的时间。因此提高导入速度的好办法就是在创建表时先不创建索引或者在导入数据之前删除所有索引,在外部文件数据逐条插入到表中后再统一创建表的索引。这样导入速度会提高,同时创建的索引也很紧凑而有效,这一原则同样适用于位图索引(Bitmap Index)。对于主要的和唯一的关键约束(key constraints),可以使之先暂时失效(disabling)或者删除约束来获得同样的效果,当然这些做法会对已经存在的表的外键约束产生相关的影响,在删除前需要通盘斟酌。
需要说明的是,这种方法在表中已存在很多数据的情况下不太合适。例如表中已有九千万条数据,而此时需要追加插入一千万条数据,实际导入数据节省的时间将会被重新创建一亿条数据的索引所消耗殆尽,这是我们不希望得到的结果。但是,如果要导入数据的表是空的或导入的数据量比已有的数据量要大得多,那么导入数据节省的时间将会少量用于重新创建索引,这时该方法才可以考虑使用。 加快索引创建是另一个需要考虑的问题。为了减少索引创建中排序的工作时间,可以在当前会话中增加 SORT_AREA_SIZE 参数的大小,该参数允许当前会话在内存的索引创建过程中执行更多的排序操作。同样还可以使用 NOLOGGING 关键字来减少因创建索引而生成的 REDO 日志量,NOLOGGING 关键字会对数据库的恢复和 Standby 备用数据库产生明显的影响,所以在使用之前要仔细斟酌,到底是速度优先还是稳定优先。
运用这种方法,先删除 CALLS 表的主键和不唯一的索引,然后逐条导入数据,完成后重新创建索引( 表在导入数据前是空的)。该方法总共消耗 130 秒,包括重建索引的时间,其中导入进程占用 CPU 时间为 35秒。
这种方法的优点是可以加快导入的速度并使索引更加紧凑有效;缺点是缺乏通用性,当你对表增加新的复杂的模式元素(索引、外键等)时你需要添加代码、修改导入执行程序。另外针对 7*24 在线要求的数据库在线导入操作时,删除表的索引会对在线用户的查询有很大的性能影响,同时也要考虑,主要或唯一的关键约束条件的删除或失效可能会影响到引用它们的外键的使用。
批量插入,表暂无索引
在Oracle V6 中 OCI 编程接口加入了数组接口特性。数组操作允许导入程序读取外部文件数据并解析后,向数据库提交SQL语句,批量插入 SQL 语句检索出的数据。Oracle 仅需要执行一次 SQL 语句,然后在内存中批量解析提供的数据。批量导入操作比逐行插入重复操作更有效率,这是因为只需一次解析 SQL 语句,一些数据绑订操作以及程序与数据库之间来回的操作都显著减少,而且数据库对每一条数据的操作都是重复可知的,这给数据库提供了优化执行的可能。其优点是数据导入的总体时间明显减少,特别是进程占用 CPU 的时间。
需要提醒的是,通过 OCI 接口确实可以执行数据批量导入操作,但是许多工具和脚本语言却不支持使用此功能。如果要使用该方法,需要研究你所使用的开发工具是否支持 OCI 批量操作功能。导入程序需要进行复杂的编码并可能存在错误的风险,缺乏一定的弹性。
运用上述方法,程序将外部数据提取到内存中的数组里,并执行批量插入操作(100行/次),保留了表的删除/重建索引操作,总的导入时间下降到 14 秒,而进程占用 CPU 的时间下降到7秒,可见实际导入数据所花费的时间显著下降了 95%。