重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
2. 什么是NoSQL?
创新互联提供做网站、网站建设、网页设计,品牌网站设计,一元广告等致力于企业网站建设与公司网站制作,10余年的网站开发和建站经验,助力企业信息化建设,成功案例突破上千多家,是您实现网站建设的好选择.
2.1 NoSQL 概述
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,
泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题,包括超大规模数据的存储。
(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。
2.2 NoSQL代表
MongDB、 Redis、Memcache
3. 关系型数据库与NoSQL的区别?
3.1 RDBMS
高度组织化结构化数据
结构化查询语言(SQL)
数据和关系都存储在单独的表中。
数据操纵语言,数据定义语言
严格的一致性
基础事务
ACID
关系型数据库遵循ACID规则
事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性:
A (Atomicity) 原子性
原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整个事务就失败,需要回滚。比如银行转账,从A账户转100元至B账户,分为两个步骤:1)从A账户取100元;2)存入100元至B账户。这两步要么一起完成,要么一起不完成,如果只完成第一步,第二步失败,钱会莫名其妙少了100元。
C (Consistency) 一致性
一致性也比较容易理解,也就是说数据库要一直处于一致的状态,事务的运行不会改变数据库原本的一致性约束。
I (Isolation) 独立性
所谓的独立性是指并发的事务之间不会互相影响,如果一个事务要访问的数据正在被另外一个事务修改,只要另外一个事务未提交,它所访问的数据就不受未提交事务的影响。比如现有有个交易是从A账户转100元至B账户,在这个交易还未完成的情况下,如果此时B查询自己的账户,是看不到新增加的100元的
D (Durability) 持久性
持久性是指一旦事务提交后,它所做的修改将会永久的保存在数据库上,即使出现宕机也不会丢失。
3.2 NoSQL
代表着不仅仅是SQL
没有声明性查询语言
没有预定义的模式
键 - 值对存储,列存储,文档存储,图形数据库
最终一致性,而非ACID属性
非结构化和不可预知的数据
CAP定理
高性能,高可用性和可伸缩性
分布式数据库中的CAP原理(了解)
CAP定理:
Consistency(一致性), 数据一致更新,所有数据变动都是同步的
Availability(可用性), 好的响应性能
Partition tolerance(分区容错性) 可靠性
P: 系统中任意信息的丢失或失败不会影响系统的继续运作。
定理:任何分布式系统只可同时满足二点,没法三者兼顾。
CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,
因此,根据 CAP 原理将 NoSQL 数据库分成了满足 CA 原则、满足 CP 原则和满足 AP 原则三 大类:
CA - 单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。
CP - 满足一致性,分区容忍性的系统,通常性能不是特别高。
AP - 满足可用性,分区容忍性的系统,通常可能对一致性要求低一些。
CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。
而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。
所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。
说明:C:强一致性 A:高可用性 P:分布式容忍性
举例:
CA:传统Oracle数据库
AP:大多数网站架构的选择
CP:Redis、Mongodb
注意:分布式架构的时候必须做出取舍。
一致性和可用性之间取一个平衡。多余大多数web应用,其实并不需要强一致性。
因此牺牲C换取P,这是目前分布式数据库产品的方向。
4. 当下NoSQL的经典应用
当下的应用是 SQL 与 NoSQL 一起使用的。
代表项目:阿里巴巴商品信息的存放。
去 IOE 化。
ps:I 是指 IBM 的小型机,很贵的,好像好几万一台;O 是指 Oracle 数据库,也很贵的,好几万呢;M 是指 EMC 的存储设备,也很贵的。
难点:
数据类型多样性。
数据源多样性和变化重构。
数据源改造而服务平台不需要大面积重构。
首先,来谈一下对数据库市场的看法,关系型数据库会一直占有主导地位。第一个原因是它的历史最久,有庞大的用户基础,根深。第二,SQL 的 query 在场景上依然是占主体的,尤其在数据分析上。 NoSQL的产生的是SQL对某些非关系为场景(KV点读)上的scalability 不好导致的。那个时候,主要问题是无法横向 scale,也就是没有分布式的支持,所以NoSQL 诞生了。而且KV, document 使用 normalized 数据结构也不利于理解和编程,所以可以看做是NoSQL 从SQL中抢了一些自己更适合的场景,所以它是在特定的时间和环境出现的一个产品。随着Distributed SQL 的出现, NoSQL 和 Distributed SQL 变得越来越像。未来几年有可能和 Distributed SQL 合并作为了一个产品类型。 NoSQL 在市场份额上不会超过或取代SQL, 在一些场景上会继续成长,尤其是用关系型数据集不好表达的,比如图。
今天 NewSQL 和 Distributed SQL 这2个名词在业界有一定的混淆。NewSQL 出现的早,可以被认为是Distributed SQL 的子集。以后还是以 Distributed SQL 为定义好。 所以你的问题其实是在 传统SQL,Distributed SQL 和 noSQL 之间如何选择。
答案是,最重要的指标是看用户的数据access的场景,和对应的数据结构。满足以下条件,更多考虑NoSQL:
数据之间没有关系,或者关系不强烈;每个row独立,row 之间不存在大规模的一对多,多对多的关系。
数据本身适合KV, 或者自我包含的hierachy关系。 比如个人profile, 完全自我contain, 人很人之间不需要query。
Access 数据的方式主要以 ID (primary key) 为主的点读,和顺序access (按顺序iterate)。
需要支持大规模的读写,低延时。
如果需要事务特性,范围限于一个或几个row, 没有关系型的事务。
使用 SQL 主要是因为 row 和 row 之间有关系; 存在一对多、多对多的关系。同时在关系的前提下,支持事务。支持table join的语法。对一致性要求高(强一致)。 Distributed SQL 提供了跨节点的分布式事务,query 等。但它是建立在牺牲性能的前提下的,延时大大价高。所以 NoSQL 是分布式+无关系,传统SQL 是 有关系+无分布式, Distributed SQL 是 分布式 + 有关系 + 性能取舍。
NewSQL 现在已经消退了,目前在国外退化为Distributed SQL原因如下:
卡耐基梅隆大学数据库教授Andy Pavlo,在文中系统地分析了NewSQL兴起到消亡的过程,给出了他认为NewSQL消亡的一些原因,比如:
1)没有开源。
2)没有拥抱公有云,在成本与技术上难与跟公有云厂商抗衡。
3)已有的关系型数据库MySQL,PostgreSQL做的不错,而且在不断改进,大部分客户数据并不多,单节点存储就能装下。
4)销售困难:客户担心切换风险,而且面临NoSQL在易用性方面的夹击。
另外,在谈到数据库发展趋势时,也提到NoSQL开始普遍支持SQL,joins和事务功能。到2021年后NewSQL概念除了中国的数据库创业公司,国外较少提了,更多地转向Distributed SQL。
NoSQL 和 关系型数据库,OLAP和OLTP的边界目前和未来会进一步模糊。市场的主要NoSQL产品开始普遍支持SQL,joins和事务功能,就我个人观点而言,NoSQL未来应该还是坚守初心——高并发,低延时,高伸缩性,对于关系型数据库擅长的 跨表Join, 跨机事务,AP等能力扩展应该谨慎些。产品选型时,最好也从这些方面多考虑些。
NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题。
虽然NoSQL流行语火起来才短短一年的时间,但是不可否认,现在已经开始了第二代运动。尽管早期的堆栈代码只能算是一种实验,然而现在的系统已经更加的成熟、稳定。不过现在也面临着一个严酷的事实:技术越来越成熟——以至于原来很好的NoSQL数据存储不得不进行重写,也有少数人认为这就是所谓的2.0版本。这里列出一些比较知名的工具,可以为大数据建立快速、可扩展的存储库。
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。
对于NoSQL并没有一个明确的范围和定义,但是他们都普遍存在下面一些共同特征:
不需要预定义模式:不需要事先定义数据模式,预定义表结构。数据中的每条记录都可能有不同的属性和格式。当插入数据时,并不需要预先定义它们的模式。
无共享架构:相对于将所有数据存储的存储区域网络中的全共享架构。NoSQL往往将数据划分后存储在各个本地服务器上。因为从本地磁盘读取数据的性能往往好于通过网络传输读取数据的性能,从而提高了系统的性能。
弹性可扩展:可以在系统运行的时候,动态增加或者删除结点。不需要停机维护,数据可以自动迁移。
分区:相对于将数据存放于同一个节点,NoSQL数据库需要将数据进行分区,将记录分散在多个节点上面。并且通常分区的同时还要做复制。这样既提高了并行性能,又能保证没有单点失效的问题。
异步复制:和RAID存储系统不同的是,NoSQL中的复制,往往是基于日志的异步复制。这样,数据就可以尽快地写入一个节点,而不会被网络传输引起迟延。缺点是并不总是能保证一致性,这样的方式在出现故障的时候,可能会丢失少量的数据。
BASE:相对于事务严格的ACID特性,NoSQL数据库保证的是BASE特性。BASE是最终一致性和软事务。
NoSQL数据库并没有一个统一的架构,两种NoSQL数据库之间的不同,甚至远远超过两种关系型数据库的不同。可以说,NoSQL各有所长,成功的NoSQL必然特别适用于某些场合或者某些应用,在这些场合中会远远胜过关系型数据库和其他的NoSQL。