重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

mpp与nosql区别,mpp数据库和oracle区别

nosql和传统的数据库有什么区别

NoSQL与关系型数据库设计理念比较

秀英网站制作公司哪家好,找成都创新互联公司!从网页设计、网站建设、微信开发、APP开发、成都响应式网站建设公司等网站项目制作,到程序开发,运营维护。成都创新互联公司自2013年创立以来到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选成都创新互联公司

关系型数据库中的表都是存储一些格式化的数据结构,每个元组字段的组成都一样,即使不是每个元组都需要所有的字段,但数据库会为每个元组分配所有的字段,这样的结构可以便于表与表之间进行连接等操作,但从另一个角度来说它也是关系型数据库性能瓶颈的一个因素。而非关系型数据库以键值对存储,它的结构不固定,每一个元组可以有不一样的字段,每个元组可以根据需要增加一些自己的键值对,这样就不会局限于固定的结构,可以减少一些时间和空间的开销。

特点:

它们可以处理超大量的数据。

它们运行在便宜的PC服务器集群上。

它们击碎了性能瓶颈。

没有过多的操作。

Bootstrap支持

缺点:

但是一些人承认,没有正式的官方支持,万一出了差错会是可怕的,至少很多管理人员是这样看。

此外,nosql并未形成一定标准,各种产品层出不穷,内部混乱,各种项目还需时间来检验

newsql和nosql的区别和联系

在大数据时代,“多种架构支持多类应用”成为数据库行业应对大数据的基本思路,数据库行业出现互为补充的三大阵营,适用于事务处理应用的OldSQL、适用于数据分析应用的NewSQL和适用于互联网应用的NoSQL。但在一些复杂的应用场景中,单一数据库架构都不能完全满足应用场景对海量结构化和非结构化数据的存储管理、复杂分析、关联查询、实时性处理和控制建设成本等多方面的需要,因此不同架构数据库混合部署应用成为满足复杂应用的必然选择。不同架构数据库混合使用的模式可以概括为:OldSQL+NewSQL、OldSQL+NoSQL、NewSQL+NoSQL三种主要模式。下面通过三个案例对不同架构数据库的混合应用部署进行介绍。

OldSQL+NewSQL 在数据中心类应用中混合部署

采用OldSQL+NewSQL模式构建数据中心,在充分发挥OldSQL数据库的事务处理能力的同时,借助NewSQL在实时性、复杂分析、即席查询等方面的独特优势,以及面对海量数据时较强的扩展能力,满足数据中心对当前“热”数据事务型处理和海量历史“冷”数据分析两方面的需求。OldSQL+NewSQL模式在数据中心类应用中的互补作用体现在,OldSQL弥补了NewSQL不适合事务处理的不足,NewSQL弥补了OldSQL在海量数据存储能力和处理性能方面的缺陷。

商业银行数据中心采用OldSQL+NewSQL混合部署方式搭建,OldSQL数据库满足各业务系统数据的归档备份和事务型应用,NewSQL MPP数据库集群对即席查询、多维分析等应用提供高性能支持,并且通过MPP集群架构实现应对海量数据存储的扩展能力。

商业银行数据中心存储架构

与传统的OldSQL模式相比,商业银行数据中心采用OldSQL+NewSQL混合搭建模式,数据加载性能提升3倍以上,即席查询和统计分析性能提升6倍以上。NewSQL MPP的高可扩展性能够应对新的业务需求,可随着数据量的增长采用集群方式构建存储容量更大的数据中心。

OldSQL+NoSQL 在互联网大数据应用中混合部署

在互联网大数据应用中采用OldSQL+NoSQL混合模式,能够很好的解决互联网大数据应用对海量结构化和非结构化数据进行存储和快速处理的需求。在诸如大型电子商务平台、大型SNS平台等互联网大数据应用场景中,OldSQL在应用中负责高价值密度结构化数据的存储和事务型处理,NoSQL在应用中负责存储和处理海量非结构化的数据和低价值密度结构化数据。OldSQL+NoSQL模式在互联网大数据应用中的互补作用体现在,OldSQL弥补了NoSQL在ACID特性和复杂关联运算方面的不足,NoSQL弥补了OldSQL在海量数据存储和非结构化数据处理方面的缺陷。

数据魔方是淘宝网的一款数据产品,主要提供行业数据分析、店铺数据分析。淘宝数据产品在存储层采用OldSQL+NoSQL混合模式,由基于MySQL的分布式关系型数据库集群MyFOX和基于HBase的NoSQL存储集群Prom组成。由于OldSQL强大的语义和关系表达能力,在应用中仍然占据着重要地位,目前存储在MyFOX中的统计结果数据已经达到10TB,占据着数据魔方总数据量的95%以上。另一方面,NoSQL作为SQL的有益补充,解决了OldSQL数据库无法解决的全属性选择器等问题。

淘宝海量数据产品技术架构

基于OldSQL+NoSQL混合架构的特点,数据魔方目前已经能够提供压缩前80TB的数据存储空间,支持每天4000万的查询请求,平均响应时间在28毫秒,足以满足未来一段时间内的业务增长需求。

NewSQL+NoSQL 在行业大数据应用中混合部署

行业大数据与互联网大数据的区别在于行业大数据的价值密度更高,并且对结构化数据的实时处理、复杂的多表关联分析、即席查询、数据强一致性等都比互联网大数据有更高的要求。行业大数据应用场景主要是分析类应用,如:电信、金融、政务、能源等行业的决策辅助、预测预警、统计分析、经营分析等。

在行业大数据应用中采用NewSQL+NoSQL混合模式,充分利用NewSQL在结构化数据分析处理方面的优势,以及NoSQL在非结构数据处理方面的优势,实现NewSQL与NoSQL的功能互补,解决行业大数据应用对高价值结构化数据的实时处理、复杂的多表关联分析、即席查询、数据强一致性等要求,以及对海量非结构化数据存储和精确查询的要求。在应用中,NewSQL承担高价值密度结构化数据的存储和分析处理工作,NoSQL承担存储和处理海量非结构化数据和不需要关联分析、Ad-hoc查询较少的低价值密度结构化数据的工作。

当前电信运营商在集中化BI系统建设过程中面临着数据规模大、数据处理类型多等问题,并且需要应对大量的固定应用,以及占统计总数80%以上的突发性临时统计(ad-hoc)需求。在集中化BI系统的建设中采用NewSQL+NoSQL混搭的模式,充分利用NewSQL在复杂分析、即席查询等方面处理性能的优势,及NoSQL在非结构化数据处理和海量数据存储方面的优势,实现高效低成本。

集中化BI系统数据存储架构

集中化BI系统按照数据类型和处理方式的不同,将结构化数据和非结构化数据分别存储在不同的系统中:非结构化数据在Hadoop平台上存储与处理;结构化、不需要关联分析、Ad-hoc查询较少的数据保存在NoSQL数据库或Hadoop平台;结构化、需要关联分析或经常ad-hoc查询的数据,保存在NewSQL MPP数据库中,短期高价值数据放在高性能平台,中长期放在低成本产品中。

结语

当前信息化应用的多样性、复杂性,以及三种数据库架构各自所具有的优势和局限性,造成任何一种架构的数据库都不能完全满足应用需求,因此不同架构数据库混合使用,从而弥补其他架构的不足成为必然选择。根据应用场景采用不同架构数据库进行组合搭配,充分发挥每种架构数据库的特点和优势,并且与其他架构数据库形成互补,完全涵盖应用需求,保证数据资源的最优化利用,将成为未来一段时期内信息化应用主要采用的解决方式。

目前在国内市场上,OldSQL主要为Oracle、IBM等国外数据库厂商所垄断,达梦、金仓等国产厂商仍处于追赶状态;南大通用凭借国产新型数据库GBase 8a异军突起,与EMC的Greenplum和HP的Vertica跻身NewSQL市场三强;NoSQL方面用户则大多采用Hadoop开源方案。

nosql和sql的区别

一样是数据库

NOSQL查询速度快,但是占用空间也大(都去索引那边了)

但是NOSQL查询复杂的逻辑关系的时候,只能批量获取到本地去统计而SQL能通过条件和关联表等方式进行筛选只显示符合条件的语句。

NOSQL用于无条件或少条件下的存取。百亿级数据也能快速取出。

SQL用于复杂的逻辑存取。在数据量不多的情况下也能跟NOSQL一样用于数据存储。

MPP与Hadoop是什么关系

NUMA全称为Non-Uniform

Memory

Access,是主流服务服务器为了提高SMP的可扩展性而采用的一种体系结构。主流服务器一般由多个NUMA节点组成,每个NUMA节点是一个SMP结构,一般由多个CPU组成,并且具有本地内存和IO设备。NUMA节点可以直接访问本地内存,也可以通过NUMA互联模块访问其他NUMA节点的内存,但是访问本地内存的速度远远高于远程访问速度,因此,开发程序要尽量减少不同NUMA节点之间的信息交互。

MPP是一种海量数据实时分析架构。

MPP作为一种不共享架构,每个节点运行自己的操作系统和数据库等,节点之间信息交互只能通过网络连接实现。MPP架构目前被并行数据库广泛采用,一般通过scan、sort和merge等操作符实时返回查询结果。目前采用MPP架构的实时查询系统有EMC

Greenplum、HP

Vertica和Googl

e

Dremel,这些都是实时数据处理领域非常有特点的系统,尤其是Dremel可以轻松扩展到上千台服务器,并在数秒内完成TB级数据的分析。

Hadoop作为一个开源项目群本身和MPP并没有什么直接关系,Hadoop中的子项目MapReduce虽然也是做数据分析处理的,但是一般只适用于离线数据分析,区别与MPP较为明显。因为Map和Reduce两个过程涉及到输出文件的存取和大量网络传输,因此往往达不到实时处理的要求。与MapReduce

相似的系统还有Microsoft

Dryad和Google

pregel。

综上所述,NUMA是一种体系结构,MPP是一种实时海量数据分析架构,而Hadoop是一个关于数据存储处理的项目群,其中的MapReduce是一种离线海量数据分析架构。

实测对比GreenPlum和Hive,GP比Hive性能高出至少一个数量级,但是大部分场景下,依然是秒级甚至分钟级的延迟,距离具体通常意义的实时毫秒级,差距巨大。

另外说一句,广义的Hadoop包括

Impala,

Presto

|

Distributed

SQL

Query

Engine

for

Big

Data

这些MPP架构的SQL引擎。Hadoop社区还在持续发展,Spark还在持续给人们带来惊喜,开源软件的迷人之处也在于此。

关系型数据库和非关系型数据库区别?

1、数据存储方式不同。

关系型和非关系型数据库的主要差异是数据存储的方式。关系型数据天然就是表格式的,因此存储在数据表的行和列中。数据表可以彼此关联协作存储,也很容易提取数据。

与其相反,非关系型数据不适合存储在数据表的行和列中,而是大块组合在一起。非关系型数据通常存储在数据集中,就像文档、键值对或者图结构。你的数据及其特性是选择数据存储和提取方式的首要影响因素。

2、扩展方式不同。

SQL和NoSQL数据库最大的差别可能是在扩展方式上,要支持日益增长的需求当然要扩展。

要支持更多并发量,SQL数据库是纵向扩展,也就是说提高处理能力,使用速度更快速的计算机,这样处理相同的数据集就更快了。

因为数据存储在关系表中,操作的性能瓶颈可能涉及很多个表,这都需要通过提高计算机性能来客服。虽然SQL数据库有很大扩展空间,但最终肯定会达到纵向扩展的上限。而NoSQL数据库是横向扩展的。

而非关系型数据存储天然就是分布式的,NoSQL数据库的扩展可以通过给资源池添加更多普通的数据库服务器(节点)来分担负载。

3、对事务性的支持不同。

如果数据操作需要高事务性或者复杂数据查询需要控制执行计划,那么传统的SQL数据库从性能和稳定性方面考虑是你的最佳选择。SQL数据库支持对事务原子性细粒度控制,并且易于回滚事务。

虽然NoSQL数据库也可以使用事务操作,但稳定性方面没法和关系型数据库比较,所以它们真正闪亮的价值是在操作的扩展性和大数据量处理方面。

参考资料来源:百度百科——关系型数据库

参考资料来源:百度百科——非关系型数据库


本文题目:mpp与nosql区别,mpp数据库和oracle区别
当前路径:http://cqcxhl.com/article/hosiih.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP